login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A215989
Number of simple unlabeled graphs on n nodes with exactly 9 connected components that are trees or cycles.
3
1, 1, 3, 6, 13, 26, 56, 115, 247, 533, 1174, 2633, 6031, 14055, 33343, 80386, 196569, 487017, 1220491, 3090331, 7896160, 20341323, 52783053, 137867631, 362237861, 956881142, 2540051927, 6772828374, 18133435767, 48734282113, 131434508449, 355627568994
OFFSET
9,3
LINKS
EXAMPLE
a(11) = 3: .o-o o o o o. .o-o o o o o. .o o o o o o.
.|/ . .| . .| | .
.o o o o o . .o o o o o . .o o o o o .
MAPLE
with(numtheory):
b:= proc(n) option remember; local d, j; `if`(n<=1, n,
(add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/(n-1))
end:
g:= proc(n) option remember; local k; `if`(n>2, 1, 0)+ b(n)-
(add(b(k)*b(n-k), k=0..n) -`if`(irem(n, 2)=0, b(n/2), 0))/2
end:
p:= proc(n, i, t) option remember; `if`(n<t, 0, `if`(n=t, 1,
`if`(min(i, t)<1, 0, add(binomial(g(i)+j-1, j)*
p(n-i*j, i-1, t-j), j=0..min(n/i, t)))))
end:
a:= n-> p(n, n, 9):
seq(a(n), n=9..50);
CROSSREFS
Column k=9 of A215977.
The labeled version is A215859.
Sequence in context: A215986 A215987 A215988 * A215980 A215979 A273226
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 29 2012
STATUS
approved