login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215979
Number of simple unlabeled graphs on 2*n nodes with exactly n connected components that are trees or cycles.
2
1, 1, 3, 6, 13, 26, 56, 115, 247, 533, 1175, 2636, 6040, 14078, 33401, 80524, 196897, 487781, 1222279, 3094507, 7905992, 20364597, 52838720, 138001953, 362565398, 957687474, 2542056376, 6777855755, 18146153182, 48766704695, 131517773945, 355842838357
OFFSET
0,3
COMMENTS
Limiting sequence of reversed rows of A215977. Also central elements of rows of A215977.
LINKS
FORMULA
a(n) = A215977(2*n,n).
a(n) ~ c * d^n / n^(5/2), where d = A051491 = 2.9557652856..., c = 4.034813602... . - Vaclav Kotesovec, Aug 31 2014
EXAMPLE
a(3) = 6: .o-o o. .o-o o. .o-o o. .o-o o. .o-o o. .o o o.
.| | . .| . .|\ . .|/ . .| . .| | |.
.o-o o. .o-o o. .o o o. .o o-o. .o o-o. .o o o.
MAPLE
with(numtheory):
b:= proc(n) option remember; local d, j; `if`(n<=1, n,
(add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/(n-1))
end:
g:= proc(n) option remember; local k; `if`(n>2, 1, 0)+ b(n)-
(add(b(k)*b(n-k), k=0..n) -`if`(irem(n, 2)=0, b(n/2), 0))/2
end:
p:= proc(n, i, t) option remember; `if`(n<t, 0, `if`(n=t, 1,
`if`(min(i, t)<1, 0, add(binomial(g(i)+j-1, j)*
p(n-i*j, i-1, t-j), j=0..min(n/i, t)))))
end:
a:= n-> p(2*n, 2*n, n):
seq(a(n), n=0..35);
MATHEMATICA
b[n_] := b[n] = If[n <= 1, n, (Sum[DivisorSum[j, #*b[#]&]*b[n-j], {j, 1, n-1}])/(n-1)];
g[n_] := g[n] = If[n > 2, 1, 0] + b[n] - (Sum[b[k]*b[n-k], {k, 0, n}] - If[EvenQ[n], b[n/2], 0])/2;
p[n_, i_, t_] := p[n, i, t] = If[n < t, 0, If[n == t, 1, If[Min[i, t]<1, 0, Sum[Binomial[g[i]+j-1, j]*p[n-i*j, i-1, t-j], {j, 0, Min[n/i, t]}]]]];
a[n_] := p[2*n, 2*n, n];
Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Feb 26 2017, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A215988 A215989 A215980 * A273226 A291726 A280563
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 29 2012
STATUS
approved