login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215985
Number of simple unlabeled graphs on n nodes with exactly 5 connected components that are trees or cycles.
3
1, 1, 3, 6, 13, 26, 55, 112, 238, 510, 1117, 2498, 5712, 13322, 31643, 76455, 187382, 465393, 1168966, 2966298, 7594035, 19597653, 50933434, 133224112, 350477003, 926855665, 2462830565, 6572892862, 17612586165, 47369774428, 127841265076, 346120109957
OFFSET
5,3
LINKS
EXAMPLE
a(7) = 3: .o-o o o. .o-o o o. .o o o o.
.|/ . .| . .| | .
.o o o . .o o o . .o o o .
MAPLE
with(numtheory):
b:= proc(n) option remember; local d, j; `if`(n<=1, n,
(add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/(n-1))
end:
g:= proc(n) option remember; local k; `if`(n>2, 1, 0)+ b(n)-
(add(b(k)*b(n-k), k=0..n) -`if`(irem(n, 2)=0, b(n/2), 0))/2
end:
p:= proc(n, i, t) option remember; `if`(n<t, 0, `if`(n=t, 1,
`if`(min(i, t)<1, 0, add(binomial(g(i)+j-1, j)*
p(n-i*j, i-1, t-j), j=0..min(n/i, t)))))
end:
a:= n-> p(n, n, 5):
seq(a(n), n=5..40);
CROSSREFS
Column k=5 of A215977.
The labeled version is A215855.
Sequence in context: A320733 A164991 A213255 * A215986 A215987 A215988
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 29 2012
STATUS
approved