Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Dec 16 2014 14:07:28
%S 1,1,3,6,13,26,55,112,238,510,1117,2498,5712,13322,31643,76455,187382,
%T 465393,1168966,2966298,7594035,19597653,50933434,133224112,350477003,
%U 926855665,2462830565,6572892862,17612586165,47369774428,127841265076,346120109957
%N Number of simple unlabeled graphs on n nodes with exactly 5 connected components that are trees or cycles.
%H Alois P. Heinz, <a href="/A215985/b215985.txt">Table of n, a(n) for n = 5..650</a>
%e a(7) = 3: .o-o o o. .o-o o o. .o o o o.
%e .|/ . .| . .| | .
%e .o o o . .o o o . .o o o .
%p with(numtheory):
%p b:= proc(n) option remember; local d, j; `if`(n<=1, n,
%p (add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/(n-1))
%p end:
%p g:= proc(n) option remember; local k; `if`(n>2, 1, 0)+ b(n)-
%p (add(b(k)*b(n-k), k=0..n) -`if`(irem(n, 2)=0, b(n/2), 0))/2
%p end:
%p p:= proc(n, i, t) option remember; `if`(n<t, 0, `if`(n=t, 1,
%p `if`(min(i, t)<1, 0, add(binomial(g(i)+j-1, j)*
%p p(n-i*j, i-1, t-j), j=0..min(n/i,t)))))
%p end:
%p a:= n-> p(n, n, 5):
%p seq(a(n), n=5..40);
%Y Column k=5 of A215977.
%Y The labeled version is A215855.
%K nonn
%O 5,3
%A _Alois P. Heinz_, Aug 29 2012