login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320733
Number of partitions of n with two sorts of part 1 which are introduced in ascending order.
3
1, 1, 3, 6, 13, 26, 54, 108, 219, 439, 882, 1766, 3539, 7081, 14172, 28351, 56716, 113443, 226908, 453833, 907698, 1815424, 3630893, 7261829, 14523725, 29047513, 58095121, 116190338, 232380810, 464761759, 929523710, 1859047619, 3718095507, 7436191301
OFFSET
0,3
LINKS
FORMULA
G.f.: ((1 - x)/(1 - 2*x)) * Product_{k>=2} 1/(1 - x^k). - Ilya Gutkovskiy, Dec 03 2019
MAPLE
b:= proc(n, i) option remember; `if`(n=0 or i<2, add(
Stirling2(n, j), j=0..2), add(b(n-i*j, i-1), j=0..n/i))
end:
a:= n-> b(n$2):
seq(a(n), n=0..40);
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0 || i < 2, Sum[StirlingS2[n, j], {j, 0, 2}], Sum[b[n - i j, i - 1], {j, 0, n/i}]];
a[n_] := b[n, n];
a /@ Range[0, 40] (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)
CROSSREFS
Column k=2 of A292745.
Sequence in context: A081254 A125049 A267581 * A164991 A213255 A215985
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 20 2018
STATUS
approved