OFFSET
0,2
COMMENTS
Assuming the conjecture that the positions of the 0-bits of the middle column ("Rule 167") are given by the sequence A000051, it follows that a possible formula could be: a(n) = 2*a(n-1) + 1 - floor((1/2)^((2^(n+1)) mod n)) with a(0)=1 and a(1)=3 (Not proved, but tested up to n = 10^4). - Andres Cicuttin, Mar 29 2016
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
LINKS
Robert Price, Table of n, a(n) for n = 0..1000
Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
S. Wolfram, A New Kind of Science
FORMULA
a(n) = floor(c*2^(n+1)), where c = 0.841789245... - Lorenzo Sauras Altuzarra, Jan 03 2023
MATHEMATICA
rule=167; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) mc=Table[catri[[k]][[k]], {k, 1, rows}]; (* Keep only middle cell from each row *) Table[FromDigits[Take[mc, k], 2], {k, 1, rows}] (* Binary Representation of Middle Column *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert Price, Jan 17 2016
STATUS
approved