login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A267581
Decimal representation of the middle column of the "Rule 167" elementary cellular automaton starting with a single ON (black) cell.
1
1, 3, 6, 13, 26, 53, 107, 215, 430, 861, 1723, 3447, 6895, 13791, 27583, 55167, 110334, 220669, 441339, 882679, 1765359, 3530719, 7061439, 14122879, 28245759, 56491519, 112983039, 225966079, 451932159, 903864319, 1807728639, 3615457279, 7230914558
OFFSET
0,2
COMMENTS
Assuming the conjecture that the positions of the 0-bits of the middle column ("Rule 167") are given by the sequence A000051, it follows that a possible formula could be: a(n) = 2*a(n-1) + 1 - floor((1/2)^((2^(n+1)) mod n)) with a(0)=1 and a(1)=3 (Not proved, but tested up to n = 10^4). - Andres Cicuttin, Mar 29 2016
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
FORMULA
a(n) = floor(c*2^(n+1)), where c = 0.841789245... - Lorenzo Sauras Altuzarra, Jan 03 2023
MATHEMATICA
rule=167; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) mc=Table[catri[[k]][[k]], {k, 1, rows}]; (* Keep only middle cell from each row *) Table[FromDigits[Take[mc, k], 2], {k, 1, rows}] (* Binary Representation of Middle Column *)
CROSSREFS
Sequence in context: A072762 A081254 A125049 * A320733 A164991 A213255
KEYWORD
nonn,easy
AUTHOR
Robert Price, Jan 17 2016
STATUS
approved