login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal representation of the middle column of the "Rule 167" elementary cellular automaton starting with a single ON (black) cell.
1

%I #25 Jan 31 2023 08:40:30

%S 1,3,6,13,26,53,107,215,430,861,1723,3447,6895,13791,27583,55167,

%T 110334,220669,441339,882679,1765359,3530719,7061439,14122879,

%U 28245759,56491519,112983039,225966079,451932159,903864319,1807728639,3615457279,7230914558

%N Decimal representation of the middle column of the "Rule 167" elementary cellular automaton starting with a single ON (black) cell.

%C Assuming the conjecture that the positions of the 0-bits of the middle column ("Rule 167") are given by the sequence A000051, it follows that a possible formula could be: a(n) = 2*a(n-1) + 1 - floor((1/2)^((2^(n+1)) mod n)) with a(0)=1 and a(1)=3 (Not proved, but tested up to n = 10^4). - _Andres Cicuttin_, Mar 29 2016

%D S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

%H Robert Price, <a href="/A267581/b267581.txt">Table of n, a(n) for n = 0..1000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>

%H S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>

%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>

%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>

%F a(n) = floor(c*2^(n+1)), where c = 0.841789245... - _Lorenzo Sauras Altuzarra_, Jan 03 2023

%t rule=167; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) mc=Table[catri[[k]][[k]],{k,1,rows}]; (* Keep only middle cell from each row *) Table[FromDigits[Take[mc,k],2],{k,1,rows}] (* Binary Representation of Middle Column *)

%Y Cf. A000051, A267576.

%K nonn,easy

%O 0,2

%A _Robert Price_, Jan 17 2016