login
A267584
a(0)=1; thereafter a(n) = 2^(1 + number of zeros in binary expansion of n).
2
1, 2, 4, 2, 8, 4, 4, 2, 16, 8, 8, 4, 8, 4, 4, 2, 32, 16, 16, 8, 16, 8, 8, 4, 16, 8, 8, 4, 8, 4, 4, 2, 64, 32, 32, 16, 32, 16, 16, 8, 32, 16, 16, 8, 16, 8, 8, 4, 32, 16, 16, 8, 16, 8, 8, 4, 16, 8, 8, 4, 8, 4, 4, 2, 128, 64, 64, 32, 64, 32, 32, 16, 64
OFFSET
0,2
LINKS
FORMULA
For n >= 1, a(n) = 2^(1+A023416(n)).
EXAMPLE
12 = 1100 in binary, which contains two 0's, so a(12) = 2^3 = 8.
MATHEMATICA
Join[{1}, Table[2^(1+DigitCount[n, 2, 0]), {n, 80}]] (* Harvey P. Dale, Oct 08 2023 *)
CROSSREFS
Partial sums give A064194.
Cf. A023416.
Sequence in context: A286596 A134066 A090988 * A337194 A343997 A278531
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 17 2016
STATUS
approved