Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Dec 07 2020 09:06:03
%S 1,1,3,6,13,26,54,108,219,439,882,1766,3539,7081,14172,28351,56716,
%T 113443,226908,453833,907698,1815424,3630893,7261829,14523725,
%U 29047513,58095121,116190338,232380810,464761759,929523710,1859047619,3718095507,7436191301
%N Number of partitions of n with two sorts of part 1 which are introduced in ascending order.
%H Alois P. Heinz, <a href="/A320733/b320733.txt">Table of n, a(n) for n = 0..3322</a>
%F G.f.: ((1 - x)/(1 - 2*x)) * Product_{k>=2} 1/(1 - x^k). - _Ilya Gutkovskiy_, Dec 03 2019
%p b:= proc(n, i) option remember; `if`(n=0 or i<2, add(
%p Stirling2(n, j), j=0..2), add(b(n-i*j, i-1), j=0..n/i))
%p end:
%p a:= n-> b(n$2):
%p seq(a(n), n=0..40);
%t b[n_, i_] := b[n, i] = If[n == 0 || i < 2, Sum[StirlingS2[n, j], {j, 0, 2}], Sum[b[n - i j, i - 1], {j, 0, n/i}]];
%t a[n_] := b[n, n];
%t a /@ Range[0, 40] (* _Jean-François Alcover_, Dec 07 2020, after _Alois P. Heinz_ *)
%Y Column k=2 of A292745.
%Y Cf. A002865, A011782, A090764.
%K nonn
%O 0,3
%A _Alois P. Heinz_, Oct 20 2018