login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320734
Number of partitions of n with three sorts of part 1 which are introduced in ascending order.
4
1, 1, 3, 7, 19, 52, 151, 442, 1314, 3921, 11737, 35171, 105464, 316318, 948863, 2846461, 8539221, 25617443, 76852054, 230555794, 691666924, 2075000173, 6224999772, 18674998357, 56024993883, 168074980137, 504224938548, 1512674813304, 4538024437036
OFFSET
0,3
LINKS
MAPLE
b:= proc(n, i) option remember; `if`(n=0 or i<2, add(
Stirling2(n, j), j=0..3), add(b(n-i*j, i-1), j=0..n/i))
end:
a:= n-> b(n$2):
seq(a(n), n=0..40);
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0 || i < 2, Sum[StirlingS2[n, j], {j, 0, 3}], Sum[b[n - i j, i - 1], {j, 0, n/i}]];
a[n_] := b[n, n];
a /@ Range[0, 40] (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)
CROSSREFS
Column k=3 of A292745.
Sequence in context: A135052 A198305 A146597 * A259812 A115254 A222324
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 20 2018
STATUS
approved