login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320737
Number of partitions of n with six sorts of part 1 which are introduced in ascending order.
4
1, 1, 3, 7, 20, 63, 233, 965, 4425, 21904, 114910, 628754, 3544272, 20393306, 118986963, 700768255, 4152987416, 24714368292, 147480695339, 881688073414, 5277421580515, 31613933962624, 189481916086717, 1136086826214117, 6813308511956936, 40867019987219945
OFFSET
0,3
LINKS
MAPLE
b:= proc(n, i) option remember; `if`(n=0 or i<2, add(
Stirling2(n, j), j=0..6), add(b(n-i*j, i-1), j=0..n/i))
end:
a:= n-> b(n$2):
seq(a(n), n=0..40);
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0 || i < 2, Sum[StirlingS2[n, j], {j, 0, 6}], Sum[b[n - i j, i - 1], {j, 0, n/i}]];
a[n_] := b[n, n];
a /@ Range[0, 40] (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)
CROSSREFS
Column k=6 of A292745.
Sequence in context: A320735 A176697 A320736 * A320738 A320739 A320740
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 20 2018
STATUS
approved