login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176697
G.f. satisfies: A(x) = 1 + x^2 + x*A(x)^2.
8
1, 1, 3, 7, 20, 63, 208, 711, 2496, 8944, 32578, 120263, 448938, 1691776, 6427130, 24589043, 94653498, 366344216, 1424750506, 5565002716, 21821377624, 85867522754, 338974659036, 1342074448663, 5327845401606, 21203102693634, 84574191671494, 338060063747476
OFFSET
0,3
COMMENTS
A recursive sequence of vectors: a(n) = vector(a(0),...,a(n-1)) * Reverse(vector(a(0),...,a(n-1))) with a(0) = a(1) = 1, a(2) = 3.
Number of Schroeder paths in which horizontal sequences are always exactly HH and never precede an up step. - David Scambler, May 23 2012
REFERENCES
F. S. Roberts, Applied Combinatorics, Prentice-Hall, 1984, p. 231.
LINKS
FORMULA
G.f.: A(x) = (1 - sqrt(1 - 4*x*(1+x^2)))/(2*x). - Paul D. Hanna, Nov 12 2011
a(n) = Sum_{i=1..n} a(i-1)*a(n-i) for n>2; a(0) = a(1) = 1, a(2) = 3. - Alois P. Heinz, May 24 2012
Recurrence: (n+1)*a(n) = 2*(2*n-1)*a(n-1) + 2*(2*n-7)*a(n-3). - Vaclav Kotesovec, Sep 11 2013
a(n) ~ sqrt(3-8*z)/(4*sqrt(Pi)*n^(3/2)*z^(n+1)), where z = (9+sqrt(273))^(1/3)/(2*3^(2/3)) - 2/(3*(9+sqrt(273)))^(1/3) = 0.236732903864563... is the root of the equation 4*z*(1+z^2)=1. - Vaclav Kotesovec, Sep 11 2013
a(n) = sum(m=0..n/2, binomial(n-2*m+1,m)*binomial(2*(n-2*m),n-2*m)/(n+1-2*m)). - Vladimir Kruchinin, Nov 21 2014
MAPLE
a:= proc(n) a(n):= add(a(i-1)*a(n-i), i=1..n) end:
a(0), a(1), a(2):= 1, 1, 3:
seq(a(n), n=0..30); # Alois P. Heinz, May 24 2012
MATHEMATICA
a[0] := 1; a[1] := 1; a[2] := 3; a[n_] := a[n] = Table[a[i], {i, 0, n - 1}].Table[a[n - 1 - i], {i, 0, n - 1}]; Table[a[n], {n, 0, 30}]
f[x_, y_, d_]:=f[x, y, d] = If[x<0||y<x, 0, If[x==0&&y==0, 1, If[d==0, f[x-1, y, -1], f[x-1, y, -1]+f[x, y-1, 1]+f[x-2, y-2, 0]]]]; Table[f[n, n, -1], {n, 0, 30}] (* David Scambler, May 24 2012 *)
PROG
(PARI) {a(n)=polcoeff((1 - sqrt(1 - 4*x*(1+x^2) +x^2*O(x^n)))/(2*x), n)} /* Paul D. Hanna */
(Maxima)
a(n):=sum(binomial(n-2*m+1, m)*binomial(2*(n-2*m), n-2*m)/(n+1-2*m), m, 0, (n)/2); /* Vladimir Kruchinin_, Nov 21 2014 */
CROSSREFS
Sequence in context: A361625 A056783 A320735 * A320736 A320737 A320738
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Apr 24 2010
EXTENSIONS
Name changed by Paul D. Hanna, Nov 12 2011
STATUS
approved