login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176699
Fermi-Dirac composite numbers that are not a sum of two Fermi-Dirac primes (A050376).
4
145, 187, 205, 217, 219, 221, 247, 301, 325, 343, 415, 427, 475, 517, 535, 553, 555, 583, 637, 667, 671, 697, 715, 781, 783, 793, 795, 805, 807, 817, 835, 847, 851, 871, 895, 901, 905, 925, 959, 1003, 1005, 1027, 1045, 1057, 1059, 1075, 1081, 1135, 1141, 1147
OFFSET
1,1
COMMENTS
We define a Fermi-Dirac composite number as a positive integer with at least two factors in its factorization over distinct terms of A050376.
They are those c for which A064547(c) >= 2, namely c= 6, 8, 10, 12,..., 62, 63, 64, 65, ..., or the complement of A050376 with respect to the natural numbers > 1.
REFERENCES
Vladimir S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature Sciences 4 (1996), 28-43.
LINKS
Simon Litsyn and Vladimir Shevelev, On factorization of integers with restrictions on the exponents, INTEGERS: El. J. of Combin. Number Theory, 7 (2007), Article #A33, 1-35.
EXAMPLE
291 = 3*97 is a Fermi-Dirac composite number, equal to 289+2, the sum of two Fermi-Dirac primes. Therefore 291 is not in the sequence.
MAPLE
A064547 := proc(n) f := ifactors(n)[2] ; a := 0 ; for p in f do a := a+wt(op(2, p)) ; end do: a ; end proc:
A050376 := proc(n) local a; if n = 1 then 2; else for a from procname(n-1)+1 do if A064547(a) = 1 then return a; end if; end do: end if; end proc:
isA176699 := proc(n) local pi, q ; if A064547(n) < 2 then return false; end if; for pi from 1 do if A050376(pi) > n then return true; else q := n-A050376(pi) ; if A064547(q) = 1 then return false; end if; end if; end do; end proc:
for n from 2 to 1000 do if isA176699(n) then printf("%d, \n", n) ; end if; end do: # R. J. Mathar, Jun 160 2010
MATHEMATICA
pow2Q[n_] := n == 2^IntegerExponent[n, 2]; fdpQ[n_] := PrimePowerQ[n] && pow2Q[FactorInteger[n][[1, 2]]]; With[{m = 1200}, p = Select[Range[m], fdpQ]; Complement[Range[m], Join[{1}, p, Plus @@@ Subsets[p, {2}]]]] (* Amiram Eldar, Oct 05 2023 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Apr 24 2010, Apr 26 2010
EXTENSIONS
Edited and extended by R. J. Mathar, Jun 16 2010
More terms from Amiram Eldar, Oct 05 2023
STATUS
approved