|
|
A320739
|
|
Number of partitions of n with eight sorts of part 1 which are introduced in ascending order.
|
|
4
|
|
|
1, 1, 3, 7, 20, 63, 233, 966, 4454, 22403, 121570, 705150, 4337883, 28091897, 190105229, 1334705996, 9656244012, 71551215515, 540187472767, 4137336876098, 32036946594336, 250131019258467, 1965050543015106, 15509209887539395, 122829846706462146
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Alois P. Heinz, Table of n, a(n) for n = 0..1112
|
|
MAPLE
|
b:= proc(n, i) option remember; `if`(n=0 or i<2, add(
Stirling2(n, j), j=0..8), add(b(n-i*j, i-1), j=0..n/i))
end:
a:= n-> b(n$2):
seq(a(n), n=0..40);
|
|
MATHEMATICA
|
b[n_, i_] := b[n, i] = If[n == 0 || i < 2, Sum[StirlingS2[n, j], {j, 0, 8}], Sum[b[n - i j, i - 1], {j, 0, n/i}]];
a[n_] := b[n, n];
a /@ Range[0, 40] (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)
|
|
CROSSREFS
|
Column k=8 of A292745.
Sequence in context: A320736 A320737 A320738 * A320740 A320741 A292503
Adjacent sequences: A320736 A320737 A320738 * A320740 A320741 A320742
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Alois P. Heinz, Oct 20 2018
|
|
STATUS
|
approved
|
|
|
|