|
|
A320741
|
|
Number of partitions of n with ten sorts of part 1 which are introduced in ascending order.
|
|
3
|
|
|
1, 1, 3, 7, 20, 63, 233, 966, 4454, 22404, 121616, 706361, 4361910, 28491982, 196018395, 1414922459, 10677120529, 83924901635, 684582037213, 5772723290503, 50123602905429, 446382776341382, 4062023996661972, 37638652689027910, 354017801203414670
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Alois P. Heinz, Table of n, a(n) for n = 0..1006
|
|
MAPLE
|
b:= proc(n, i) option remember; `if`(n=0 or i<2, add(
Stirling2(n, j), j=0..10), add(b(n-i*j, i-1), j=0..n/i))
end:
a:= n-> b(n$2):
seq(a(n), n=0..40);
|
|
MATHEMATICA
|
b[n_, i_] := b[n, i] = If[n == 0 || i < 2, Sum[StirlingS2[n, j], {j, 0, 10}], Sum[b[n - i j, i - 1], {j, 0, n/i}]];
a[n_] := b[n, n];
a /@ Range[0, 40] (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)
|
|
CROSSREFS
|
Column k=10 of A292745.
Sequence in context: A320738 A320739 A320740 * A292503 A340357 A071688
Adjacent sequences: A320738 A320739 A320740 * A320742 A320743 A320744
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Alois P. Heinz, Oct 20 2018
|
|
STATUS
|
approved
|
|
|
|