|
|
A320744
|
|
Number of chiral pairs of color patterns (set partitions) in a cycle of length n using 4 or fewer colors (subsets).
|
|
3
|
|
|
0, 0, 0, 0, 0, 6, 30, 130, 532, 2006, 7626, 28401, 106260, 396435, 1486147, 5580130, 21032880, 79486763, 301317282, 1145123672, 4362804633, 16658456825, 63738451998, 244332656201, 938244497740, 3608640426930, 13899977105315, 53614228550220, 207061964668740, 800639722002163, 3099251007215286, 12009598156277090, 46582685655751645, 180850428684482360
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,6
|
|
COMMENTS
|
Two color patterns are equivalent if the colors are permuted.
Adnk[d,n,k] in Mathematica program is coefficient of x^k in A(d,n)(x) in Gilbert and Riordan reference.
There are nonrecursive formulas, generating functions, and computer programs for A056292 and A305750, which can be used in conjunction with the first formula.
|
|
LINKS
|
Andrew Howroyd, Table of n, a(n) for n = 1..200
E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.
|
|
FORMULA
|
a(n) = (A056292(n) - A305750(n)) / 2 = A056292(n) - A056354(n) = A056354(n) - A305750(n).
a(n) = Sum_{j=1..k} -Ach(n,j)/2 + (1/2n)*Sum_{d|n} phi(d)*A(d,n/d,j), where k=4 is the maximum number of colors, Ach(n,k) = [n>=0 & n<2 & n==k] + [n>1]*(k*Ach(n-2,k) + Ach(n-2,k-1) + Ach(n-2,k-2)), and A(d,n,k) = [n==0 & k==0] + [n>0 & k>0]*(k*A(d,n-1,k) + Sum_{j|d} A(d,n-1,k-j)).
a(n) = A059053(n) + A320643(n) + A320644(n).
|
|
EXAMPLE
|
For a(6)=6, the chiral pairs are AAABBC-AAABCC, AABABC-AABCAC, AABACB-AABCAB, AABACC-AABBAC, AABACD-AABCAD, and AABCBD-AABCDC.
|
|
MATHEMATICA
|
Adnk[d_, n_, k_] := Adnk[d, n, k] = If[n>0 && k>0, Adnk[d, n-1, k]k + DivisorSum[d, Adnk[d, n-1, k-#]&], Boole[n == 0 && k == 0]]
Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2, k] + Ach[n-2, k-1] + Ach[n-2, k-2]] (* A304972 *)
k=4; Table[Sum[(DivisorSum[n, EulerPhi[#] Adnk[#, n/#, j]&]/n - Ach[n, j])/2, {j, k}], {n, 40}]
|
|
CROSSREFS
|
Column 4 of A320742.
Cf. A056292 (oriented), A056354 (unoriented), A305750 (achiral).
Sequence in context: A007465 A261389 A073389 * A232061 A247386 A317755
Adjacent sequences: A320741 A320742 A320743 * A320745 A320746 A320747
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Robert A. Russell, Oct 21 2018
|
|
STATUS
|
approved
|
|
|
|