login
A059053
Number of chiral pairs of necklaces with n beads and two colors (color complements being equivalent); i.e., turning the necklace over neither leaves it unchanged nor simply swaps the colors.
11
0, 0, 0, 0, 0, 0, 0, 1, 2, 7, 12, 31, 58, 126, 234, 484, 906, 1800, 3402, 6643, 12624, 24458, 46686, 90157, 172810, 333498, 641340, 1238671, 2388852, 4620006, 8932032, 17302033, 33522698, 65042526, 126258960, 245361172, 477091232
OFFSET
0,9
COMMENTS
Number of chiral pairs of set partitions of a cycle of n elements using exactly two different elements. - Robert A. Russell, Oct 02 2018
FORMULA
a(n) = A000013(n) - A000011(n) = A000011(n) - A016116(n) = (A000013(n) - A016116(n))/2.
From Robert A. Russell, Oct 02 2018: (Start)
a(n) = (A056295(n)-A052551(n-2)) / 2 = A056295(n) - A056357(n) = A056357(n) - A052551(n-2).
a(n) = -S2(1+floor(n/2),2) + (1/2n) * Sum_{d|n} phi(d) * S2(n/d+[2|d],2), where S2 is a Stirling subset number A008277.
G.f.: -x(1+2x)/(2-4x^2) - Sum_{d>0} phi(d) * log(1-2x^d) / (2d*(2-[2|d])).
(End)
EXAMPLE
For a(7) = 1, the chiral pair is AAABABB-AAABBAB.
For a(8) = 2, the chiral pairs are AAAABABB-AAAABBAB and AAABAABB-AAABBAAB.
MATHEMATICA
Prepend[Table[DivisorSum[n, EulerPhi[#] StirlingS2[n/# + If[Divisible[#, 2], 1, 0], 2] &] / (2n) - StirlingS2[1+Floor[n/2], 2] / 2, {n, 1, 40}], 0] (* Robert A. Russell, Oct 02 2018 *)
PROG
(PARI) a(n) = {if(n<1, 0, (sumdiv(n, k, eulerphi(2*k) * 2^(n/k)) / (2*n) - 2^(n\2))/2)}; \\ Andrew Howroyd, Nov 03 2019
CROSSREFS
Column 2 of A320647 and A320742.
Cf. A056295 (oriented), A056357 (unoriented), A052551(n-2) (achiral).
Sequence in context: A290234 A327734 A308706 * A032025 A088662 A073710
KEYWORD
nonn
AUTHOR
Henry Bottomley, Dec 21 2000
EXTENSIONS
Name clarified by Robert A. Russell, Oct 02 2018
STATUS
approved