login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059055
Primes which can be written as (b^k+1)/(b+1) for positive integers b and k.
11
3, 7, 11, 13, 31, 43, 61, 73, 157, 211, 241, 307, 421, 463, 521, 547, 601, 683, 757, 1123, 1483, 1723, 2551, 2731, 2971, 3307, 3541, 3907, 4423, 4831, 5113, 5701, 6007, 6163, 6481, 8011, 8191, 9091, 9901, 10303, 11131, 12211, 12433, 13421, 13807, 14281
OFFSET
1,1
COMMENTS
For (b^k+1)/(b+1) to be a prime, k must be an odd prime. 2=(0^0+1)/(0+1) has been excluded since neither b nor k would be positive.
From Bernard Schott, Apr 30 2021: (Start)
43 is the only known prime to have two such representations (examples).
The next two sequences realize a partition of this set: Brazilian primes of the form (c^q-1)/(c-1) (A002383 \ {3}) and primes that are not Brazilian (A343774). (End)
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..10000 (first 3880 terms from T. D. Noe)
H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
EXAMPLE
43 is in the sequence since (2^7+1)/(2+1) = 129/3 = 43; indeed also (7^3+1)/(7+1) = 344/8 = 43.
MATHEMATICA
max = 89; maxdata = (1 + max^3)/(1 + max); a = {}; Do[i = 1; While[i = i + 2; cc = (1 + m^i)/(1 + m); cc <= maxdata, If[PrimeQ[cc], a = Append[a, cc]]], {m, 2, max}]; Union[a] (* Lei Zhou, Feb 08 2012 *)
PROG
(PARI) isok(p) = {if (isprime(p), for (b=2, p, my(k=3); while ((x=(b^k+1)/(b+1)) <= p, if (x == p, return (1)); k = nextprime(k+1); ); ); ); } \\ Michel Marcus, Apr 30 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Henry Bottomley, Dec 21 2000
STATUS
approved