|
|
A002383
|
|
Primes of form k^2 + k + 1.
(Formerly M2641 N1051)
|
|
53
|
|
|
3, 7, 13, 31, 43, 73, 157, 211, 241, 307, 421, 463, 601, 757, 1123, 1483, 1723, 2551, 2971, 3307, 3541, 3907, 4423, 4831, 5113, 5701, 6007, 6163, 6481, 8011, 8191, 9901, 10303, 11131, 12211, 12433, 13807, 14281, 17293, 19183, 20023, 20593, 21757, 22651, 23563
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Also these primes are sums of 1 and some consecutive even numbers starting at 2; e.g., 31 = 1+2+4+6+8+10. - Labos Elemer, Apr 15 2003
Also primes of form n^2 - n + 1 (Prime central polygonal numbers, A002061). - Zak Seidov, Jan 26 2006
Also primes which are of the form TriangularNumber(n) + TriangularNumber(n+2): 7 = 1+6, 13 = 3+10, 31 = 10+21, 43 = 15+28, 73 = 28+45, ... - Vladimir Joseph Stephan Orlovsky, Apr 03 2009
It is not known whether there are infinitely many primes of the form n^2+n+1. See Rose reference. - Daniel Tisdale, Jun 27 2009
These numbers when >= 7 are prime repunits 111_n in a base n >= 2, so except for 3, they are all Brazilian primes belonging to A085104. (See Links "Les nombres brésiliens", Sections V.4 - V.5.) A002383 is generated by A002384 which lists the bases n of 111_n. A002383 = A053183 Union A185632. - Bernard Schott, Dec 22 2012
For a(n)>13, the fractional part of square root of a(n) starts with digit 5 (see A034101). - Charles Kusniec, Sep 06 2022
|
|
REFERENCES
|
D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 46.
L. Poletti, Le serie dei numeri primi appartenente alle due forme quadratiche (A) n^2+n+1 e (B) n^2+n-1 per l'intervallo compreso entro 121 milioni, e cioè per tutti i valori di n fino a 11000, Atti della Reale Accademia Nazionale dei Lincei, Memorie della Classe di Scienze Fisiche, Matematiche e Naturali, s. 6, v. 3 (1929), pages 193-218.
H. E. Rose, A Course in Number Theory, Clarendon Press, 1988, p. 217.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
Bernard Schott, Les nombres brésiliens, Quadrature, no. 76, avril-juin 2010, pages 30-38; included here with permission from the editors of Quadrature.
|
|
FORMULA
|
|
|
MAPLE
|
|
|
MATHEMATICA
|
Select[Table[n^2+n+1, {n, 250}], PrimeQ] (* Harvey P. Dale, Mar 23 2012 *)
|
|
PROG
|
(PARI) list(lim)=select(n->isprime(n), vector((sqrt(4*lim-3)-1)\2, k, k^2+k+1)) \\ Charles R Greathouse IV, Jul 25 2011
(Magma) [ a: n in [1..100] | IsPrime(a) where a is n^2+n+1 ]; // Wesley Ivan Hurt, Jun 16 2014
(Python)
from sympy import isprime
print(list(filter(isprime, (n**2 + n + 1 for n in range(150))))) # Michael S. Branicky, Apr 20 2022
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|