

A079018


Suppose p and q = p+16 are primes. Define the difference pattern of (p,q) to be the successive differences of the primes in the range p to q. There are 17 possible difference patterns, namely [16], [4,12], [6,10], [10,6], [12,4], [4,2,10], [4,6,6], [4,8,4], [6,4,6], [6,6,4], [10,2,4], [4,2,4,6], [4,2,6,4], [4,6,2,4], [6,4,2,4], [4,2,4,2,4], [2,2,4,2,4,2]. Sequence gives smallest value of p for each difference pattern, sorted by magnitude.


1



3, 7, 13, 31, 43, 67, 73, 151, 181, 211, 241, 277, 331, 463, 487, 1597, 1831
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Table of n, a(n) for n=1..17.


EXAMPLE

p=181, q=197 has difference pattern [10,2,4] and {181,191,193,197} is the corresponding consecutive prime 4tuple.


CROSSREFS

A022008(1)=7, A078952(1)=13, A078852(1)=73, A078953(1)=67, A078954(1)=1597, A078961(1)=31, A078856(1)=73, A078858(1)=151, A031934(1)=A000230(8)=1831.
Cf. A079016A079024.
Sequence in context: A083520 A336801 A162869 * A342150 A002383 A163418
Adjacent sequences: A079015 A079016 A079017 * A079019 A079020 A079021


KEYWORD

fini,full,nonn


AUTHOR

Labos Elemer, Jan 24 2003


STATUS

approved



