|
|
A000230
|
|
a(0)=2; for n>=1, a(n) = smallest prime p such that there is a gap of exactly 2n between p and next prime, or -1 if no such prime exists.
(Formerly M2685 N1075)
|
|
105
|
|
|
2, 3, 7, 23, 89, 139, 199, 113, 1831, 523, 887, 1129, 1669, 2477, 2971, 4297, 5591, 1327, 9551, 30593, 19333, 16141, 15683, 81463, 28229, 31907, 19609, 35617, 82073, 44293, 43331, 34061, 89689, 162143, 134513, 173359, 31397, 404597, 212701, 188029, 542603, 265621, 461717, 155921, 544279, 404851, 927869, 1100977, 360653, 604073
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
p + 1 = A045881(n) starts the smallest run of exactly 2n-1 successive composite numbers. - Lekraj Beedassy, Apr 23 2010
Weintraub gives upper bounds on a(252), a(255), a(264), a(273), and a(327) based on a search from 1.1 * 10^16 to 1.1 * 10^16 + 1.5 * 10^9, probably performed on a 1970s microcomputer. - Charles R Greathouse IV, Aug 26 2022
|
|
REFERENCES
|
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
Sol Weintraub, A large prime gap, Mathematics of Computation Vol. 36, No. 153 (Jan 1981), p. 279.
|
|
FORMULA
|
|
|
EXAMPLE
|
The following table, based on a very much larger table in the web page of Tomás Oliveira e Silva (see link) shows, for each gap g, P(g) = the smallest prime such that P(g)+g is the smallest prime number larger than P(g);
* marks a record-holder: g is a record-holder if P(g') > P(g) for all (even) g' > g, i.e., if all prime gaps are smaller than g for all primes smaller than P(g); P(g) is a record-holder if P(g') < P(g) for all (even) g' < g.
-----
g P(g)
-----
1* 2*
2* 3*
4* 7*
6* 23*
8* 89*
10 139*
12 199*
14* 113
16 1831*
18* 523
20* 887
22* 1129
24 1669
26 2477*
28 2971*
30 4297*
32 5591*
34* 1327
36* 9551*
........
The first time a gap of 4 occurs between primes is between 7 and 11, so a(2)=7 and A001632(2)=11.
|
|
MATHEMATICA
|
Join[{2}, With[{pr = Partition[Prime[Range[86000]], 2, 1]}, Transpose[ Flatten[ Table[Select[pr, #[[2]] - #[[1]] == 2n &, 1], {n, 50}], 1]][[1]]]] (* Harvey P. Dale, Apr 20 2012 *)
|
|
PROG
|
(Perl) use ntheory ":all"; my($l, $i, @g)=(2, 0); forprimes { $g[($_-$l) >> 1] //= $l; while (defined $g[$i]) { print "$i $g[$i]\n"; $i++; } $l=$_; } 1e10; # Dana Jacobsen, Mar 29 2019
(Python)
import numpy
from sympy import sieve as prime
aupto = 50
A000230 = np.zeros(aupto+1, dtype=object)
gap = (prime[it+1] - prime[it]) // 2
it += 1
|
|
CROSSREFS
|
A001632(n) = 2n + a(n) = nextprime(a(n)).
Cf. A100964 (least prime number that begins a prime gap of at least 2n).
|
|
KEYWORD
|
nonn,nice
|
|
AUTHOR
|
|
|
EXTENSIONS
|
a(38)-a(49) from Robert A. Stump (bee_ess107(AT)yahoo.com), Jan 11 2002
"or -1 if ..." added to definition at the suggestion of Alexander Wajnberg by N. J. A. Sloane, Feb 02 2020
|
|
STATUS
|
approved
|
|
|
|