login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000231
Number of inequivalent Boolean functions of n variables under action of complementing group.
(Formerly M2702 N1083)
8
2, 3, 7, 46, 4336, 134281216, 288230380379570176, 2658455991569831764110243006194384896, 452312848583266388373324160190187140390789016525312000869601987902398529536
OFFSET
0,1
COMMENTS
The next term has 152 digits. - Harvey P. Dale, Jun 21 2011
REFERENCES
M. A. Harrison, Introduction to Switching and Automata Theory. McGraw Hill, NY, 1965, p. 143.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (Includes this sequence, correctly, although in the Preface on page viii 4336 is mis-typed as 4436).
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..11
R. L. Ashenhurst, The application of counting techniques, Proc. ACM Nat. Mtg., Pittsburg, 1952, 293-305.
Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018.
M. A. Harrison, The number of transitivity sets of Boolean functions, J. Soc. Indust. Appl. Math., 11 (1963), 806-828.
FORMULA
a(n) = (2^(2^n)+(2^n-1)*2^(2^(n-1)))/2^n.
MAPLE
a:= n-> (2^(2^n)+(2^n-1)*2^(2^(n-1)))/2^n:
seq(a(n), n=0..8); # Alois P. Heinz, Jan 27 2023
MATHEMATICA
Table[(2^(2^n)+(2^n-1)*2^(2^(n-1)))/2^n, {n, 10}] (* Harvey P. Dale, Jun 21 2011 *)
PROG
(PARI) a(n)=(2^(2^n-n)+(2^n-1)*2^(2^(n-1)-n)) \\ Charles R Greathouse IV, Jul 29 2016
CROSSREFS
Cf. A051502.
Row sums of A054724.
Sequence in context: A349893 A058181 A198959 * A090593 A030090 A260298
KEYWORD
easy,nonn,nice
EXTENSIONS
More terms from Vladeta Jovovic, Apr 20 2000
a(0)=2 prepended by Alois P. Heinz, Jan 27 2023
STATUS
approved