Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M2702 N1083 #42 Jan 27 2023 12:13:20
%S 2,3,7,46,4336,134281216,288230380379570176,
%T 2658455991569831764110243006194384896,
%U 452312848583266388373324160190187140390789016525312000869601987902398529536
%N Number of inequivalent Boolean functions of n variables under action of complementing group.
%C The next term has 152 digits. - _Harvey P. Dale_, Jun 21 2011
%D M. A. Harrison, Introduction to Switching and Automata Theory. McGraw Hill, NY, 1965, p. 143.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (Includes this sequence, correctly, although in the Preface on page viii 4336 is mis-typed as 4436).
%H Michael De Vlieger, <a href="/A000231/b000231.txt">Table of n, a(n) for n = 0..11</a>
%H R. L. Ashenhurst, <a href="https://doi.org/10.1145/609784.609825">The application of counting techniques</a>, Proc. ACM Nat. Mtg., Pittsburg, 1952, 293-305.
%H Steven R. Finch, <a href="https://doi.org/10.1017/9781316997741">Mathematical Constants II</a>, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018.
%H M. A. Harrison, <a href="https://www.jstor.org/stable/2946322">The number of transitivity sets of Boolean functions</a>, J. Soc. Indust. Appl. Math., 11 (1963), 806-828.
%H <a href="/index/Bo#Boolean">Index entries for sequences related to Boolean functions</a>
%F a(n) = (2^(2^n)+(2^n-1)*2^(2^(n-1)))/2^n.
%p a:= n-> (2^(2^n)+(2^n-1)*2^(2^(n-1)))/2^n:
%p seq(a(n), n=0..8); # _Alois P. Heinz_, Jan 27 2023
%t Table[(2^(2^n)+(2^n-1)*2^(2^(n-1)))/2^n,{n,10}] (* _Harvey P. Dale_, Jun 21 2011 *)
%o (PARI) a(n)=(2^(2^n-n)+(2^n-1)*2^(2^(n-1)-n)) \\ _Charles R Greathouse IV_, Jul 29 2016
%Y Cf. A051502.
%Y Row sums of A054724.
%K easy,nonn,nice
%O 0,1
%A _N. J. A. Sloane_
%E More terms from _Vladeta Jovovic_, Apr 20 2000
%E a(0)=2 prepended by _Alois P. Heinz_, Jan 27 2023