OFFSET
0,8
REFERENCES
M. A. Harrison, Introduction to Switching and Automata Theory. McGraw Hill, NY, 1965, p. 143.
LINKS
FORMULA
T(n,k) = 2^(-n)*C(2^n, k) if k is odd and 2^(-n)*(C(2^n, k) + (2^n-1)*C(2^(n-1), k/2)) if k is even.
EXAMPLE
Triangle begins:
k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 sums
n
0 1 1 2
1 1 1 1 3
2 1 1 3 1 1 7
3 1 1 7 7 14 7 7 1 1 46
4 1 1 15 35 140 273 553 715 870 715 553 273 140 35 15 1 1 4336
...
MAPLE
T:= (n, k)-> (binomial(2^n, k)+`if`(k::odd, 0,
(2^n-1)*binomial(2^(n-1), k/2)))/2^n:
seq(seq(T(n, k), k=0..2^n), n=0..5); # Alois P. Heinz, Jan 27 2023
MATHEMATICA
rows = 5; t[n_, k_?OddQ] := 2^-n*Binomial[2^n, k]; t[n_, k_?EvenQ] := 2^-n*(Binomial[2^n, k] + (2^n-1)*Binomial[2^(n-1), k/2]); Flatten[ Table[ t[n, k], {n, 1, rows}, {k, 0, 2^n}]] (* Jean-François Alcover, Nov 21 2011, after Vladeta Jovovic *)
T[n_, k_]:= If[OddQ[k], Binomial[2^n, k]/2^n, 2^(-n)*(Binomial[2^n, k] + (2^n - 1)*Binomial[2^(n - 1), k/2])]; Table[T[n, k], {n, 1, 5}, {k, 0, 2^n}] //Flatten (* G. C. Greubel, Feb 15 2018 *)
CROSSREFS
KEYWORD
easy,nonn,nice,tabf
AUTHOR
Vladeta Jovovic, Apr 20 2000
EXTENSIONS
Two terms for row n=0 prepended by Alois P. Heinz, Jan 27 2023
STATUS
approved