login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052265
Triangle giving T(n,r) = number of equivalence classes of Boolean functions of n variables and range r=0..2^n under action of symmetric group.
9
1, 1, 1, 2, 1, 1, 3, 4, 3, 1, 1, 4, 9, 16, 20, 16, 9, 4, 1, 1, 5, 17, 52, 136, 284, 477, 655, 730, 655, 477, 284, 136, 52, 17, 5, 1, 1, 6, 28, 134, 625, 2674, 10195, 34230, 100577, 258092, 579208, 1140090, 1974438, 3016994, 4077077, 4881092, 5182326, 4881092
OFFSET
0,4
COMMENTS
Also, T(n,k) is the number of unlabeled n-vertex hypergraphs (or set systems) with k hyperedges. - Pontus von Brömssen, Apr 10 2024
REFERENCES
M. A. Harrison, Introduction to Switching and Automata Theory. McGraw Hill, NY, 1965, p. 147.
FORMULA
T(n,k) = A371830(n,k-1) + A371830(n,k) (with A371830(n,k) = 0 if k < 0 or k >= 2^n). - Pontus von Brömssen, Apr 10 2024
EXAMPLE
Triangle begins:
1, 1;
1, 2, 1;
1, 3, 4, 3, 1;
1, 4, 9, 16, 20, 16, 9, 4, 1;
1, 5, 17, 52, 136, 284, 477, 655, 730, 655, 477, 284, 136, 52, 17, 5, 1;
...
MATHEMATICA
Table[rl = Table[Tuples[{0, 1}, nn][[i]] -> i, {i, 1, 2^nn}];
f[permutation_] := PermutationCycles[Map[Permute[#, permutation] &, Tuples[{0, 1}, nn]] /. rl]; CoefficientList[(Map[CycleIndexPolynomial[#, Array[Subscript[x, ##] &, 2^nn], 2^nn] &, Map[f, Permutations[Range[nn]]]] // Total)/nn! /.
Table[Subscript[x, i] -> 1 + x^i, {i, 1, nn!}], x], {nn, 0, 8}] (* Geoffrey Critzer, Jun 22 2021 *)
PROG
(PARI)
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
Fix(q, x)={my(v=divisors(lcm(Vec(q))), u=apply(t->2^sum(j=1, #q, gcd(t, q[j])), v)); prod(i=1, #v, my(t=v[i]); (1+x^t)^(sum(j=1, i, my(d=t/v[j]); if(!frac(d), moebius(d)*u[j]))/t))}
Row(n)={my(s=0); forpart(q=n, s+=permcount(q)*Fix(q, x)); Vecrev(s/n!)}
{ for(n=0, 4, print(Row(n))) } \\ Andrew Howroyd, Mar 26 2020
CROSSREFS
Row sums give A003180.
Cf. A028657, A371830 (empty hyperedge not permitted).
Sequence in context: A305431 A128314 A025564 * A306565 A055068 A237498
KEYWORD
nonn,tabf,nice
AUTHOR
Vladeta Jovovic, Feb 04 2000
STATUS
approved