login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306565
Expansion of Product_{k>=1} (1 - x^k * (1 + x)).
6
1, -1, -2, -1, 1, 3, 4, 3, 1, -2, -6, -8, -8, -8, -5, 2, 8, 12, 17, 22, 23, 17, 7, 0, -7, -22, -40, -51, -53, -49, -45, -42, -30, -4, 30, 65, 90, 100, 112, 137, 157, 152, 120, 71, 18, -33, -80, -125, -187, -275, -357, -401, -407, -380, -327, -269, -221, -171, -75, 102, 322, 515, 669, 801
OFFSET
0,3
LINKS
FORMULA
G.f.: exp( - Sum_{k>=1} x^k * Sum_{d|k} (1+x)^d / d).
MATHEMATICA
m = 63; CoefficientList[Series[Product[1 - x^k * (1 + x), {k, 1, m}], {x, 0, m}], x] (* Amiram Eldar, May 14 2021 *)
PROG
(PARI) N=66; x='x+O('x^N); Vec(prod(k=1, N, 1-x^k*(1+x)))
(PARI) N=66; x='x+O('x^N); Vec(exp(-sum(k=1, N, x^k*sumdiv(k, d, (1+x)^d/d))))
CROSSREFS
Convolution inverse of A227681.
Cf. A160571.
Sequence in context: A128314 A025564 A052265 * A055068 A237498 A319516
KEYWORD
sign
AUTHOR
Seiichi Manyama, Apr 16 2019
STATUS
approved