login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306566
y-value of the smallest solution to x^2 - p*y^2 = 2*(-1)^((p+1)/4), p = A002145(n).
3
1, 1, 1, 3, 1, 7, 9, 1, 3, 27, 7, 1, 1, 47, 3, 193, 9, 747, 3383, 627, 1, 153, 217, 9041, 36321, 1, 1, 161, 121, 23, 20687, 699, 537, 233, 2900979, 43, 1, 7199, 5843427, 7, 803, 593, 1, 1, 731153, 59, 79, 326471, 13809, 3, 7, 12507, 541137, 11, 563210019
OFFSET
1,4
COMMENTS
a(n) exists for all n.
X = A306529(n)^2 - (-1)^((p+1)/4), Y = A306529(n)*a(n) gives the smallest solution to x^2 - p*y^2 = 1, p = A002145(n). As a result, all the positive solutions to x^2 - p*y^2 = 2*(-1)^((p+1)/4) are given by (x_n, y_n) where x_n + (y_n)*sqrt(p) = (A306529(n) + a(n)*sqrt(p))*(X + Y*sqrt(p))^n.
FORMULA
If the continued fraction of sqrt(A002145(n)) is [a_0; {a_1, a_2, ..., a_(k-1), a_k, a_(k-1), ..., a_1, 2*a_0}], where {} is the periodic part, let x/y = [a_0; a_1, a_2, ..., a_(k-1)], gcd(x, y) = 1, then A306529(n) = x and a(n) = y.
EXAMPLE
The smallest solution to x^2 - p*y^2 = 2*(-1)^((p+1)/4) for the first primes congruent to 3 modulo 4:
n | Equation | x_min | y_min
1 | x^2 - 3*y^2 = -2 | 1 | 1
2 | x^2 - 7*y^2 = +2 | 3 | 1
3 | x^2 - 11*y^2 = -2 | 3 | 1
4 | x^2 - 19*y^2 = -2 | 13 | 3
5 | x^2 - 23*y^2 = +2 | 5 | 1
6 | x^2 - 31*y^2 = +2 | 39 | 7
7 | x^2 - 43*y^2 = -2 | 59 | 9
8 | x^2 - 47*y^2 = +2 | 7 | 1
9 | x^2 - 59*y^2 = -2 | 23 | 3
PROG
(PARI) b(p) = if(isprime(p)&&p%4==3, y=1; while(!issquare(p*y^2 + 2*(-1)^((p+1)/4)), y++); y)
forprime(p=3, 500, if(p%4==3, print1(b(p), ", ")))
CROSSREFS
Cf. A002145, A306529 (x-values).
Similar sequences: A094048, A094049 (x^2 - A002144(n)*y^2 = -1); A306618, A306619 (2*x^2 - A002145(n)*y^2 = (-1)^((p+1)/4))).
Sequence in context: A137908 A229837 A019639 * A329943 A372908 A011207
KEYWORD
nonn
AUTHOR
Jianing Song, Mar 25 2019
STATUS
approved