login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319516
Number of integers x such that 1 <= x <= n and gcd(x,n) = gcd(x+2,n) = gcd(x+6,n) = gcd(x+8,n) = 1.
5
1, 1, 1, 2, 1, 1, 3, 4, 3, 1, 7, 2, 9, 3, 1, 8, 13, 3, 15, 2, 3, 7, 19, 4, 5, 9, 9, 6, 25, 1, 27, 16, 7, 13, 3, 6, 33, 15, 9, 4, 37, 3, 39, 14, 3, 19, 43, 8, 21, 5, 13, 18, 49, 9, 7, 12, 15, 25, 55, 2, 57, 27, 9, 32, 9, 7, 63, 26, 19, 3, 67, 12, 69, 33, 5, 30, 21, 9, 75, 8
OFFSET
1,4
COMMENTS
Equivalently, a(n) is the number of "admissible" residue classes modulo n which are allowed (by divisibility considerations) to contain infinitely many initial primes in prime quadruples (p, p+2, p+6, p+8). This is a generalization of Euler's totient function: the number of residue classes modulo n containing infinitely many primes.
If n is prime, a(n) = max(1,n-4).
REFERENCES
V. A. Golubev, Sur certaines fonctions multiplicatives et le problème des jumeaux. Mathesis 67 (1958), 11-20.
József Sándor and Borislav Crstici, Handbook of Number Theory II, Kluwer, 2004, p. 289.
LINKS
V. A. Golubev, A generalization of the functions phi(n) and pi(x), Časopis pro pěstování matematiky 78 (1953), 47-48.
V. A. Golubev, Exact formulas for the number of twin primes and other generalizations of the function pi(x), Časopis pro pěstování matematiky 87 (1962), 296-305.
Alexei Kourbatov and Marek Wolf, Predicting maximal gaps in sets of primes, arXiv preprint arXiv:1901.03785 [math.NT], 2019.
FORMULA
Multiplicative with a(p^e) = p^(e-1) if p <= 5; (p-4)*p^(e-1) if p > 5.
Sum_{k=1..n} a(k) ~ c * n^2, where c = (49/200) * Product_{p prime >= 7} (1 - 4/p^2) = 0.1987646881... . - Amiram Eldar, Nov 01 2022
EXAMPLE
Some prime quadruples start with a prime congruent to 1 mod 4; others start with a prime congruent to 3 mod 4; that is, there are 2 "admissible" residue classes mod 4; therefore a(4)=2. All initial primes in prime quadruples are 5 mod 6; that is, there is only one "admissible" residue class mod 6; therefore a(6) = 1.
MATHEMATICA
a[n_] := Sum[Boole[CoprimeQ[n, x] && CoprimeQ[n, x+2] && CoprimeQ[n, x+6] && CoprimeQ[n, x+8]], {x, 1, n}]; Array[a, 80] (* Jean-François Alcover, Jan 29 2019 *)
f[p_, e_] := If[p < 7, p^(e-1), (p-4)*p^(e-1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 22 2020 *)
PROG
(PARI) phi4(n) = sum(x=1, n, (gcd(n, x)==1) && (gcd(n, x+2)==1) && (gcd(n, x+6)==1) && (gcd(n, x+8)==1));
for(n=1, 80, print1(phi4(n)", "))
CROSSREFS
Cf. similar generalizations of totient for k-tuples: A002472 (k=2), A319534 (k=3), A321029 (k=5), A321030 (k=6).
Sequence in context: A306565 A055068 A237498 * A015138 A157807 A371279
KEYWORD
nonn,mult
AUTHOR
Alexei Kourbatov, Sep 21 2018
STATUS
approved