login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319534
Number of integers x such that 1 <= x <= n and gcd(x,n) = gcd(x+2,n) = gcd(x+6,n) = 1.
5
1, 1, 1, 2, 2, 1, 4, 4, 3, 2, 8, 2, 10, 4, 2, 8, 14, 3, 16, 4, 4, 8, 20, 4, 10, 10, 9, 8, 26, 2, 28, 16, 8, 14, 8, 6, 34, 16, 10, 8, 38, 4, 40, 16, 6, 20, 44, 8, 28, 10, 14, 20, 50, 9, 16, 16, 16, 26, 56, 4, 58, 28, 12, 32, 20, 8, 64, 28, 20, 8, 68, 12, 70, 34, 10, 32, 32, 10, 76, 16
OFFSET
1,4
COMMENTS
Equivalently, a(n) is the number of "admissible" residue classes modulo n which are allowed (by divisibility considerations) to contain infinitely many initial primes in prime triples (p, p+2, p+6). This sequence also gives the number of "admissible" residue classes (mod n) for initial primes p in the other type of prime triples: (p,p+4,p+6). This is a generalization of Euler's totient function (the number of residue classes modulo n containing infinitely many primes).
If n is prime, a(n) = max(1,n-3).
REFERENCES
V. A. Golubev, Sur certaines fonctions multiplicatives et le problème des jumeaux. Mathesis 67 (1958), 11-20.
József Sándor and Borislav Crstici, Handbook of Number Theory II, Kluwer, 2004, p. 289.
LINKS
V. A. Golubev, A generalization of the functions phi(n) and pi(x), Časopis pro pěstování matematiky 78 (1953), 47-48.
V. A. Golubev, Exact formulas for the number of twin primes and other generalizations of the function pi(x), Časopis pro pěstování matematiky 87 (1962), 296-305.
Alexei Kourbatov and Marek Wolf, Predicting maximal gaps in sets of primes, arXiv preprint arXiv:1901.03785 [math.NT], 2019.
FORMULA
Multiplicative with a(p^e) = p^(e-1) if p = 2,3; (p-3)*p^(e-1) if p > 3.
Sum_{k=1..n} a(k) ~ c * n^2, where c = (7/24) * Product_{p prime >= 5} (1 - 3/p^2) = 0.2196022165... . - Amiram Eldar, Nov 01 2022
EXAMPLE
All initial primes p in prime triples (p, p+2, p+6) are congruent to 5 mod 6; that is, there is only one "admissible" residue class mod 6; therefore a(6) = 1.
MATHEMATICA
a[n_] := Sum[Boole[CoprimeQ[n, x] && CoprimeQ[n, x+2] && CoprimeQ[n, x+6]], {x, 1, n}]; Array[a, 80] (* Jean-François Alcover, Jan 29 2019 *)
f[p_, e_] := If[p < 5, p^(e-1), (p-3)*p^(e-1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 22 2020 *)
PROG
(PARI) phi3(n) = sum(x=1, n, (gcd(n, x)==1) && (gcd(n, x+2)==1) && (gcd(n, x+6)==1));
for(n=1, 80, print1(phi3(n)", "))
CROSSREFS
Cf. similar generalizations of totient for k-tuples: A002472 (k=2), A319516 (k=4), A321029 (k=5), A321030 (k=6).
Sequence in context: A225639 A110664 A193922 * A061436 A214095 A213948
KEYWORD
nonn,mult
AUTHOR
Alexei Kourbatov, Sep 22 2018
STATUS
approved