login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193922
Mirror of the triangle A193921.
2
1, 1, 1, 2, 2, 1, 4, 4, 3, 2, 7, 7, 6, 5, 3, 12, 12, 11, 10, 8, 5, 20, 20, 19, 18, 16, 13, 8, 33, 33, 32, 31, 29, 26, 21, 13, 54, 54, 53, 52, 50, 47, 42, 34, 21, 88, 88, 87, 86, 84, 81, 76, 68, 55, 34, 143, 143, 142, 141, 139, 136, 131, 123, 110, 89, 55, 232, 232, 231
OFFSET
0,4
COMMENTS
A193922 is obtained by reversing the rows of the triangle A193921.
Also, triangle read by rows: T(n,k) = Fibonacci(n+2) - Fibonacci(k+1) with T(0,0) = 1, 0 <= k <= n. - Arkadiusz Wesolowski, Aug 05 2012
LINKS
FORMULA
Write w(n,k) for the triangle at A193921. The triangle at A193922 is then given by w(n,n-k).
G.f.: 1-(x*y-y-x)/((x^2+x-1)*(y^2+y-1)). - Vladimir Kruchinin, Jan 12 2024
EXAMPLE
First six rows:
1
1 1
2 2 1
4 4 3 2
7 7 6 5 3
12 12 11 10 8 5
MATHEMATICA
z = 12;
p[n_, x_] := Sum[Fibonacci[k + 1]*x^(n - k), {k, 0, n}];
q[n_, x_] := x*q[n - 1, x] + 1; q[0, n_] := 1;
t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
g[n_] := CoefficientList[w[n, x], {x}]
TableForm[Table[Reverse[g[n]], {n, -1, z}]]
Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193921 *)
TableForm[Table[g[n], {n, -1, z}]]
Flatten[Table[g[n], {n, -1, z}]] (* this sequence *)
Factor[w[7, x]]
Factor[w[8, x]]
Table[Expand[p[n, x]], {n, 0, 4}]
Table[Expand[q[n, x]], {n, 0, 4}]
Prepend[Flatten@Table[Fibonacci[n + 2] - Fibonacci[k + 1], {n, 10}, {k, 0, n}], 1] (* Arkadiusz Wesolowski, Aug 05 2012 *)
CROSSREFS
Cf. A193921.
Sequence in context: A182222 A225639 A110664 * A319534 A061436 A214095
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 09 2011
STATUS
approved