login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193923
Triangular array: the fusion of (p(n,x)) by (q(n,x)), where p(n,x)=(x+1)^n and q(n,x)=Sum_{k=0..n}F(k+1)*x^(n-k), where F=A000045 (Fibonacci numbers).
2
1, 1, 1, 1, 2, 3, 1, 3, 5, 8, 1, 4, 8, 13, 21, 1, 5, 12, 21, 34, 55, 1, 6, 17, 33, 55, 89, 144, 1, 7, 23, 50, 88, 144, 233, 377, 1, 8, 30, 73, 138, 232, 377, 610, 987, 1, 9, 38, 103, 211, 370, 609, 987, 1597, 2584, 1, 10, 47, 141, 314, 581, 979, 1596, 2584, 4181, 6765
OFFSET
0,5
COMMENTS
See A193722 for the definition of fusion of two sequences of polynomials or triangular arrays.
The row sums equal A079289(2*n). - Johannes W. Meijer, Aug 12 2013
LINKS
T. G. Lavers, Fibonacci numbers, ordered partitions, and transformations of a finite set, Australasian Journal of Combinatorics, Volume 10(1994), pp. 147-151. See triangle p. 151 (with rows reversed and initial term 0).
FORMULA
T(n, k) = Sum_{p=0..k} binomial(n+k-p-1, p). - Johannes W. Meijer, Aug 12 2013
T(n, n) = Fibonacci(2*n) for n>=1. - Michel Marcus, Nov 03 2020
EXAMPLE
First six rows:
1
1...1
1...2...3
1...3...5....8
1...4...8....13...21
1...5...12...21...34...55
MAPLE
T := proc(n, k) option remember: if k = 0 then return(1) fi: if k = n then return(combinat[fibonacci](2*n)) fi: T(n, k) := T(n-1, k-1) + T(n-1, k) end: seq(seq(T(n, k), k=0..n), n=0..9); # Johannes W. Meijer, Aug 12 2013
MATHEMATICA
p[n_, x_] := (x + 1)^n;
q[n_, x_] := Sum[Fibonacci[k + 1]*x^(n - k), {k, 0, n}];
t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
g[n_] := CoefficientList[w[n, x], {x}]
TableForm[Table[Reverse[g[n]], {n, -1, z}]]
Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193923 *)
TableForm[Table[g[n], {n, -1, z}]]
Flatten[Table[g[n], {n, -1, z}]] (* A193924 *)
CROSSREFS
Cf. A001906 (Fibonacci(2*n)).
Sequence in context: A194740 A194762 A054250 * A198811 A067337 A180091
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 09 2011
STATUS
approved