Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Nov 03 2020 11:46:37
%S 1,1,1,1,2,3,1,3,5,8,1,4,8,13,21,1,5,12,21,34,55,1,6,17,33,55,89,144,
%T 1,7,23,50,88,144,233,377,1,8,30,73,138,232,377,610,987,1,9,38,103,
%U 211,370,609,987,1597,2584,1,10,47,141,314,581,979,1596,2584,4181,6765
%N Triangular array: the fusion of (p(n,x)) by (q(n,x)), where p(n,x)=(x+1)^n and q(n,x)=Sum_{k=0..n}F(k+1)*x^(n-k), where F=A000045 (Fibonacci numbers).
%C See A193722 for the definition of fusion of two sequences of polynomials or triangular arrays.
%C The row sums equal A079289(2*n). - _Johannes W. Meijer_, Aug 12 2013
%H Michel Marcus, <a href="/A193923/b193923.txt">Rows n=0..100 of triangle, flattened</a>
%H T. G. Lavers, <a href="https://ajc.maths.uq.edu.au/pdf/10/ocr-ajc-v10-p147.pdf">Fibonacci numbers, ordered partitions, and transformations of a finite set</a>, Australasian Journal of Combinatorics, Volume 10(1994), pp. 147-151. See triangle p. 151 (with rows reversed and initial term 0).
%F T(n, k) = Sum_{p=0..k} binomial(n+k-p-1, p). - _Johannes W. Meijer_, Aug 12 2013
%F T(n, n) = Fibonacci(2*n) for n>=1. - _Michel Marcus_, Nov 03 2020
%e First six rows:
%e 1
%e 1...1
%e 1...2...3
%e 1...3...5....8
%e 1...4...8....13...21
%e 1...5...12...21...34...55
%p T := proc(n, k) option remember: if k = 0 then return(1) fi: if k = n then return(combinat[fibonacci](2*n)) fi: T(n, k) := T(n-1, k-1) + T(n-1, k) end: seq(seq(T(n, k), k=0..n), n=0..9); # _Johannes W. Meijer_, Aug 12 2013
%t p[n_, x_] := (x + 1)^n;
%t q[n_, x_] := Sum[Fibonacci[k + 1]*x^(n - k), {k, 0, n}];
%t t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
%t w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
%t g[n_] := CoefficientList[w[n, x], {x}]
%t TableForm[Table[Reverse[g[n]], {n, -1, z}]]
%t Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193923 *)
%t TableForm[Table[g[n], {n, -1, z}]]
%t Flatten[Table[g[n], {n, -1, z}]] (* A193924 *)
%Y Cf. A193722, A193924.
%Y Cf. A001906 (Fibonacci(2*n)).
%K nonn,tabl
%O 0,5
%A _Clark Kimberling_, Aug 09 2011