OFFSET
1,1
COMMENTS
This sequence is generated by the first PARI program below for m=3, p=1. Other values of m and p also converge but not necessarily to 1. For m=2 and p=1 we have the count of steps for the x+1 problem. m=prime and p=m+1 usually converge to 1 but break down for certain values of n. E.g., 17 locks at n=34, 23 at n=49 29 at n=91. I verified m=7 for n up to 100000. 100000 requires 157 steps to reach 1.
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..100000
Cino Hilliard, The x+1 conjecture
EXAMPLE
x=1. step 1: x = 1+3-1 = 3; step 2: x = 3/3 = 1. Count: 2 steps.
PROG
(PARI) multxp2(n, m, p) = { print1(2" "); for(j=1, n, x=j; c=0; while(x>1, r = x%m; if(r==0, x=x/m, x=x*p+m-r); print1(x" "); ); ) }
(PARI) A061436(n) = if(1==n, 2, my(c=0); while(n>1, if(!(n%3), n = n/3, n += (3-(n%3))); c++); (c)); \\ Antti Karttunen, Apr 05 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, Mar 29 2003
STATUS
approved