login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193919
Triangular array: the fusion of (p(n,x)) by (q(n,x)), where p(n,x)=sum{F(k+1)*x^(n-k) : 0<=k<=n}, where F=A000045 (Fibonacci numbers), and q(n,x)=(x+1)^n.
2
1, 1, 1, 1, 3, 2, 2, 7, 9, 4, 3, 14, 25, 21, 7, 5, 28, 64, 75, 46, 12, 8, 53, 148, 224, 195, 94, 20, 13, 99, 326, 603, 679, 468, 185, 33, 21, 181, 687, 1502, 2073, 1855, 1056, 353, 54, 34, 327, 1405, 3543, 5786, 6357, 4711, 2280, 659, 88, 55, 584, 2802, 8005
OFFSET
0,5
COMMENTS
See A193722 for the definition of fusion of two sequences of polynomials or triangular arrays.
EXAMPLE
First six rows:
1
1...1
1...3....2
2...7....9....4
3...14...25...21...7
5...28...64...75...46...12
MATHEMATICA
p[n_, x_] := Sum[Fibonacci[k + 1]*x^(n - k), {k, 0, n}];
q[n_, x_] := (x + 1)^n;
t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
g[n_] := CoefficientList[w[n, x], {x}]
TableForm[Table[Reverse[g[n]], {n, -1, z}]]
Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193919 *)
TableForm[Table[g[n], {n, -1, z}]]
Flatten[Table[g[n], {n, -1, z}]] (* A193920 *)
CROSSREFS
Sequence in context: A020835 A244639 A352673 * A055674 A210612 A266275
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 09 2011
STATUS
approved