login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266275
Decimal expansion of zeta'(-20) (the derivative of Riemann's zeta function at -20).
14
1, 3, 2, 2, 8, 0, 9, 9, 7, 5, 0, 4, 2, 1, 2, 5, 1, 4, 5, 2, 7, 0, 9, 8, 2, 1, 1, 5, 8, 5, 7, 8, 5, 5, 1, 8, 6, 8, 0, 6, 4, 8, 0, 0, 9, 9, 9, 9, 5, 5, 0, 3, 1, 4, 5, 8, 8, 4, 7, 4, 5, 0, 1, 9, 2, 4, 1, 4, 2, 9, 1, 5, 7, 1, 9, 9, 4, 0, 4, 2, 9, 3, 8, 7, 7, 8, 3, 9, 4, 6, 4
OFFSET
3,2
LINKS
FORMULA
zeta'(-20) = (9280784638125*zeta(21))/(8*Pi^20) = - log(A(20)).
Equals (174611/1320)*(zeta(21)/zeta(20)).
EXAMPLE
132.28099750421251452709821158578551868064800999955031458847450192414...
MATHEMATICA
RealDigits[N[Zeta'[-20], 100]]
CROSSREFS
Cf. A075700 (zeta'(0)), A084448 (zeta'(-1)), A240966 (zeta'(-2)), A259068 (zeta'(-3)), A259069 (zeta'(-4)), A259070 (zeta'(-5)), A259071 (zeta'(-6)), A259072 (zeta'(-7)), A259073 (zeta'(-8)), A266260 (zeta'(-9)), A266261 (zeta'(-10)), A266262 (zeta'(-11)), A266263 (zeta'(-12)), A260660 (zeta'(-13)), A266264 (zeta'(-14)), A266270 (zeta'(-15)), A266271 (zeta'(-16)), A266272 (zeta'(-17)), A266273 (zeta'(-18)), A266274 (zeta'(-19)).
Sequence in context: A193919 A055674 A210612 * A288536 A268864 A329956
KEYWORD
nonn,cons
AUTHOR
G. C. Greubel, Dec 26 2015
EXTENSIONS
Offset corrected by Rick L. Shepherd, May 30 2016
STATUS
approved