login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259070
Decimal expansion of zeta'(-5) (the derivative of Riemann's zeta function at -5) (negated).
19
0, 0, 0, 5, 7, 2, 9, 8, 5, 9, 8, 0, 1, 9, 8, 6, 3, 5, 2, 0, 4, 9, 9, 0, 9, 9, 4, 1, 4, 8, 8, 3, 3, 8, 7, 4, 5, 1, 3, 2, 5, 3, 9, 8, 7, 2, 9, 1, 1, 9, 9, 5, 2, 1, 2, 1, 7, 8, 2, 0, 7, 9, 1, 8, 8, 0, 9, 9, 7, 7, 3, 5, 0, 3, 1, 3, 5, 0, 8, 3, 1, 2, 5, 7, 8, 6, 5, 3, 9, 9, 3, 4, 2, 3, 8, 5, 7, 0, 0, 5, 0, 6, 0, 0, 3, 8
OFFSET
0,4
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15.1 Generalized Glaisher constants, p. 136-137.
LINKS
J. B. Rosser, L. Schoenfeld, Approximate formulas for some functions of prime numbers, Ill. J. Math. 6 (1) (1962) 64-94, Table IV
Eric Weisstein's MathWorld, Riemann Zeta Function.
FORMULA
zeta'(-n) = (BernoulliB(n+1)*HarmonicNumber(n))/(n+1) - log(A(n)), where A(n) is the n-th Bendersky constant, that is the n-th generalized Glaisher constant.
zeta'(-5) = 137/15120 - log(A(5)), where A(5) is A243265.
Equals 137/15120 - (gamma + log(2*Pi))/252 + 15*Zeta'(6) / (4*Pi^6), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jul 25 2015
EXAMPLE
-0.000572985980198635204990994148833874513253987291199521217820791880997735...
MATHEMATICA
Join[{0, 0, 0}, RealDigits[Zeta'[-5], 10, 103] // First]
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
STATUS
approved