login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266278
Number of legal Go positions on a 2 X n board.
6
5, 57, 489, 4125, 35117, 299681, 2557605, 21826045, 186255781, 1589441093, 13563736693, 115748216413, 987755062201, 8429158472781, 71931509371765, 613838505628281, 5238284505542721, 44701699729693429, 381468772192258129, 3255321946095461785, 27779786302899765081
OFFSET
1,1
LINKS
J. Tromp and G. Farnebäck, Combinatorics of Go, Lecture Notes in Computer Science, 4630, 84-99, 2007.
FORMULA
a(n) = 10*a(n-1)-16*a(n-2)+31*a(n-3)-13*a(n-4)+20*a(n-5)+2*a(n-6)-a(n-7).
G.f.: x*(1 + x)^2*(5 - 3*x - 5*x^3 - x^4) / ((1 + x^2)*(1 - 10*x + 15*x^2 - 21*x^3 - 2*x^4 + x^5)). - Colin Barker, Jan 05 2018
EXAMPLE
For n = 1, the a(1) = 5 legal 2 X 1 boards are .. X. O. .X .O
PROG
(PARI) Vec(x*(1 + x)^2*(5 - 3*x - 5*x^3 - x^4) / ((1 + x^2)*(1 - 10*x + 15*x^2 - 21*x^3 - 2*x^4 + x^5)) + O(x^40)) \\ Colin Barker, Jan 05 2018
CROSSREFS
Sequence in context: A196971 A197558 A218658 * A103047 A223628 A107339
KEYWORD
nonn,easy
AUTHOR
Felix Fröhlich, Dec 26 2015
EXTENSIONS
Corrected and edited by John Tromp, Jan 26 2016
STATUS
approved