OFFSET
0,2
COMMENTS
Named after the Swiss mathematician Hermann Kinkelin (1832-1913). - Amiram Eldar, Jun 16 2021
LINKS
Gert Almkvist, Asymptotic formulas and generalized Dedekind sums, Exper. Math., Vol. 7, No. 4 (1998), pp. 343-359.
Hermann Kinkelin, Ueber eine mit der Gammafunction verwandte Transcendente und deren Anwendung auf die Integralrechnung, J. Reine Angew. Math., Vol. 57 (1860), pp. 122-158; alternative link. See eq. (22), p. 133.
E. M. Wright, Asymptotic partition formulae, I: Plane partitions, Quart. J. Math., Vol. 2 (1931), pp. 177-189.
FORMULA
Zeta(1, -1). Almkvist gives many formulas.
Equals (1 - gamma - log(2*Pi))/12 + Zeta'(2)/(2*Pi^2), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jul 25 2015
From Amiram Eldar, Jun 16 2021: (Start)
Equals 1/24 - gamma/3 - Sum_{k>=1} (zeta(2*k+1)-1)/((2*k+1)*(2*k+3)) = 1/12 - log(A), where A is the Glaisher-Kinkelin constant (A074962) (Kinkelin, 1860).
Equals 2 * Integral_{x>=0} x*log(x)/(exp(2*Pi*x)-1) dx (Wright, 1931). (End)
EXAMPLE
-0.1654211437004509292139196602427806427640363803352017836665223...
MAPLE
Digits := 200; evalf(Zeta(1, -1));
MATHEMATICA
RealDigits[1/12 - Log[Glaisher], 10, 99] // First (* Jean-François Alcover, Feb 15 2013 *)
PROG
(PARI) -zeta'(-1) \\ Charles R Greathouse IV, Dec 12 2013
CROSSREFS
KEYWORD
AUTHOR
N. J. A. Sloane, Jun 27 2003
STATUS
approved