Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Dec 17 2024 10:28:12
%S 1,6,5,4,2,1,1,4,3,7,0,0,4,5,0,9,2,9,2,1,3,9,1,9,6,6,0,2,4,2,7,8,0,6,
%T 4,2,7,6,4,0,3,6,3,8,0,3,3,5,2,0,1,7,8,3,6,6,6,5,2,2,3,0,6,3,5,7,3,5,
%U 9,6,9,9,6,6,6,5,7,7,1,7,2,7,5,9,5,2,5,1,0,0,3,3,2,5,0,8,7,5,5
%N Decimal expansion of (negative of) Kinkelin constant.
%C Named after the Swiss mathematician Hermann Kinkelin (1832-1913). - _Amiram Eldar_, Jun 16 2021
%H Gert Almkvist, <a href="https://projecteuclid.org/euclid.em/1047674152">Asymptotic formulas and generalized Dedekind sums</a>, Exper. Math., Vol. 7, No. 4 (1998), pp. 343-359.
%H Hermann Kinkelin, <a href="https://doi.org/10.1515/crll.1860.57.122">Ueber eine mit der Gammafunction verwandte Transcendente und deren Anwendung auf die Integralrechnung</a>, J. Reine Angew. Math., Vol. 57 (1860), pp. 122-158; <a href="https://eudml.org/doc/147780">alternative link</a>. See eq. (22), p. 133.
%H E. M. Wright, <a href="https://doi.org/10.1093/qmath/os-2.1.177">Asymptotic partition formulae, I: Plane partitions</a>, Quart. J. Math., Vol. 2 (1931), pp. 177-189.
%F Zeta(1, -1). Almkvist gives many formulas.
%F Equals (1 - gamma - log(2*Pi))/12 + Zeta'(2)/(2*Pi^2), where gamma is the Euler-Mascheroni constant A001620. - _Vaclav Kotesovec_, Jul 25 2015
%F From _Amiram Eldar_, Jun 16 2021: (Start)
%F Equals 1/24 - gamma/3 - Sum_{k>=1} (zeta(2*k+1)-1)/((2*k+1)*(2*k+3)) = 1/12 - log(A), where A is the Glaisher-Kinkelin constant (A074962) (Kinkelin, 1860).
%F Equals 2 * Integral_{x>=0} x*log(x)/(exp(2*Pi*x)-1) dx = 2*A261819. (Wright, 1931). (End)
%e -0.1654211437004509292139196602427806427640363803352017836665223...
%p Digits := 200; evalf(Zeta(1,-1));
%t RealDigits[1/12 - Log[Glaisher], 10, 99] // First (* _Jean-François Alcover_, Feb 15 2013 *)
%o (PARI) -zeta'(-1) \\ _Charles R Greathouse IV_, Dec 12 2013
%Y Cf. A001620, A074962, A084539.
%K nonn,cons,easy,changed
%O 0,2
%A _N. J. A. Sloane_, Jun 27 2003