login
A109063
Expansion of eta(q)/eta(q^5)^5 in powers of q.
2
1, -1, -1, 0, 0, 6, -5, -4, 0, 0, 25, -20, -16, 0, 0, 84, -65, -50, 0, 0, 250, -190, -144, 0, 0, 676, -505, -376, 0, 0, 1706, -1260, -929, 0, 0, 4064, -2970, -2166, 0, 0, 9243, -6700, -4850, 0, 0, 20200, -14535, -10444, 0, 0, 42677, -30520, -21802, 0, 0, 87512, -62235, -44212, 0, 0, 174814
OFFSET
-1,6
LINKS
W. Duke, Continued fractions and modular functions, Bull. Amer. Math. Soc. 42 (2005), 137-162. See page 150.
FORMULA
Euler transform of period 5 sequence [ -1, -1, -1, -1, 4, ...].
G.f. A(x) satisfies: 0=f(A(x), A(x^2), A(x^4)) where f(u, v, w)=u^2*w^2 +2*u*v^2*w +4*u*v^3 -v^3*w.
G.f.: (1/x)*Product_{k>0} (1-x^k)/(1-x^(5k))^5.
a(5n+2) = a(5n+3) = 0.
EXAMPLE
1/q -1 -q + 6*q^4 -5*q^5 -4*q^6 + 25*q^9 -20*q^10 -16*q^11 +...
MATHEMATICA
QP:= QPochhammer; Table[SeriesCoefficient[QP[q]/QP[q^5]^5, {q, 0, n}], {n, 0, 50}] (* G. C. Greubel, Dec 13 2017 *)
PROG
(PARI) {a(n)=local(A); if(n<-1, 0, n++; A=x*O(x^n); polcoeff( eta(x+A)/eta(x^5+A)^5, n))}
CROSSREFS
Cf. A053723.
Sequence in context: A193211 A195713 A306712 * A110390 A193178 A084448
KEYWORD
sign
AUTHOR
Michael Somos, Jun 17 2005
STATUS
approved