login
A084446
Number of triangular partitions of n of order 4.
4
1, 4, 10, 23, 47, 88, 158, 270, 443, 706, 1094, 1654, 2450, 3561, 5087, 7159, 9936, 13613, 18437, 24702, 32764, 43060, 56103, 72505, 92999, 118439, 149828, 188346, 235356, 292437, 361424, 444417, 543822, 662405, 803304, 970085, 1166807, 1398040, 1668939
OFFSET
0,2
LINKS
G. Almkvist, Asymptotic formulas and generalized Dedekind sums, Exper. Math., 7 (No. 4, 1998), pp. 343-359.
FORMULA
G.f.: 1/((1-x)^4*(1-x^3)^3*(1-x^5)^2*(1-x^7)).
MATHEMATICA
CoefficientList[Series[1/((1 - x)^4 (1-x^3)^3 (1-x^5)^2 (1 - x^7)), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 29 2016 *)
PROG
(PARI) Vec(1/((1-x)^4*(1-x^3)^3*(1-x^5)^2*(1-x^7)) + O(x^50)) \\ Michel Marcus, Dec 08 2014
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x)^4*(1-x^3)^3*(1-x^5)^2*(1-x^7)))); // Vincenzo Librandi, Aug 29 2016
CROSSREFS
Sequence in context: A002766 A305102 A008268 * A209815 A158671 A001980
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 27 2003
STATUS
approved