login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001980 Number of partitions of floor(7n/2)-1 into n nonnegative integers each no greater than 7.
(Formerly M3388 N1368)
2
0, 1, 4, 10, 23, 48, 94, 166, 285, 464, 734, 1109, 1646, 2371, 3366, 4652, 6357, 8519, 11309, 14754, 19103, 24399, 30956, 38797, 48355, 59665, 73264, 89145, 108011, 129864, 155554, 185017, 219336, 258438, 303604, 354665, 413213, 479048, 554033 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

In Cayley's terminology, this is the number of literal terms of degree n and of weight floor(7n/2)-1 involving the letters a, b, c, d, e, f, g, h, having weights 0, 1, 2, 3, 4, 5, 6, 7 respectively. - Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008

REFERENCES

A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vincenzo Librandi and Alois P. Heinz, Table of n, a(n) for n = 0..1000 (first 86 terms from Vincenzo Librandi)

A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281.

A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281. [Annotated scanned copy]

FORMULA

Coefficient of x^w*z^n in the expansion of 1/((1-z)(1-xz)(1-x^2z)(1-x^3z)(1-x^4z)(1-x^5z)(1-x^6z)(1-x^7z)), where w=floor(7n/2)-1. - Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008

G.f.: -(x^24 +3*x^23 +5*x^22 +10*x^21 +17*x^20 +26*x^19 +33*x^18 +45*x^17 +55*x^16 +61*x^15 +63*x^14 +68*x^13 +67*x^12 +68*x^11 +63*x^10 +61*x^9 +55*x^8 +45*x^7 +33*x^6 +26*x^5 +17*x^4 +10*x^3 +5*x^2 +3*x +1)*x / ((x^4+x^3+x^2+x+1) *(x^4-x^2+1) *(x^2+x+1)^2 *(x^2-x +1)^2 *(x^2+1)^3 *(x+1)^5 *(x-1)^7). - Alois P. Heinz, Jul 25 2015

PROG

(PARI) f=1/((1-z)*(1-x*z)*(1-x^2*z)*(1-x^3*z)*(1-x^4*z)*(1-x^5*z)*(1-x^6*z)*(1-x^7*z)); n=400; p=subst(subst(f, x, x+x*O(x^n)), z, z+z*O(z^n)); for(d=0, 60, w=floor(7*d/2)-1; print1(polcoeff(polcoeff(p, w), d)", ")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008

CROSSREFS

Cf. A001979.

Sequence in context: A084446 A209815 A158671 * A266376 A057750 A295059

Adjacent sequences:  A001977 A001978 A001979 * A001981 A001982 A001983

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane.

EXTENSIONS

Better definition and more terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008

a(0)=0 inserted by Alois P. Heinz, Jul 25 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 22:12 EST 2021. Contains 349435 sequences. (Running on oeis4.)