Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M3388 N1368 #35 Oct 27 2023 21:08:49
%S 0,1,4,10,23,48,94,166,285,464,734,1109,1646,2371,3366,4652,6357,8519,
%T 11309,14754,19103,24399,30956,38797,48355,59665,73264,89145,108011,
%U 129864,155554,185017,219336,258438,303604,354665,413213,479048,554033
%N Number of partitions of floor(7n/2)-1 into n nonnegative integers each no greater than 7.
%C In Cayley's terminology, this is the number of literal terms of degree n and of weight floor(7n/2)-1 involving the letters a, b, c, d, e, f, g, h, having weights 0, 1, 2, 3, 4, 5, 6, 7 respectively. - Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008
%D A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Alois P. Heinz, <a href="/A001980/b001980.txt">Table of n, a(n) for n = 0..1000</a> (first 86 terms from Vincenzo Librandi)
%H A. Cayley, <a href="http://quod.lib.umich.edu/cgi/t/text/pageviewer-idx?c=umhistmath;cc=umhistmath;q1=second%20memoir%20on%20quantics;rgn=full%20text;cite1=cayley;cite1restrict=author;idno=ABS3153.0002.001;didno=ABS3153.0002.001;view=pdf;seq=00000289">Numerical tables supplementary to second memoir on quantics</a>, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281.
%H A. Cayley, <a href="/A001971/a001971.pdf">Numerical tables supplementary to second memoir on quantics</a>, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281. [Annotated scanned copy]
%H <a href="/index/Rec#order_34">Index entries for linear recurrences with constant coefficients</a>, signature (1, 1, -1, 2, -1, -2, 0, -1, 0, 1, 2, 2, -1, -2, 1, -4, 0, 4, -1, 2, 1, -2, -2, -1, 0, 1, 0, 2, 1, -2, 1, -1, -1, 1).
%F Coefficient of x^w*z^n in the expansion of 1/((1-z)(1-xz)(1-x^2z)(1-x^3z)(1-x^4z)(1-x^5z)(1-x^6z)(1-x^7z)), where w=floor(7n/2)-1. - Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008
%F G.f.: -(x^24 +3*x^23 +5*x^22 +10*x^21 +17*x^20 +26*x^19 +33*x^18 +45*x^17 +55*x^16 +61*x^15 +63*x^14 +68*x^13 +67*x^12 +68*x^11 +63*x^10 +61*x^9 +55*x^8 +45*x^7 +33*x^6 +26*x^5 +17*x^4 +10*x^3 +5*x^2 +3*x +1)*x / ((x^4+x^3+x^2+x+1) *(x^4-x^2+1) *(x^2+x+1)^2 *(x^2-x +1)^2 *(x^2+1)^3 *(x+1)^5 *(x-1)^7). - _Alois P. Heinz_, Jul 25 2015
%o (PARI) f=1/((1-z)*(1-x*z)*(1-x^2*z)*(1-x^3*z)*(1-x^4*z)*(1-x^5*z)*(1-x^6*z)*(1-x^7*z)); n=400; p=subst(subst(f,x,x+x*O(x^n)),z,z+z*O(z^n)); for(d=0,60,w=floor(7*d/2)-1;print1(polcoeff(polcoeff(p,w),d)",")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008
%Y Cf. A001979.
%K nonn,easy
%O 0,3
%A _N. J. A. Sloane_
%E Better definition and more terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008
%E a(0)=0 inserted by _Alois P. Heinz_, Jul 25 2015