login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377823
Sum of the positions of maximum parts in all compositions of n.
1
0, 1, 4, 10, 23, 50, 110, 240, 526, 1147, 2489, 5368, 11510, 24543, 52090, 110109, 231959, 487245, 1020980, 2134838, 4455582, 9283742, 19314740, 40128699, 83265342, 172564435, 357228078, 738707908, 1526004117, 3149310585, 6493394292, 13376521031, 27532616663
OFFSET
0,3
FORMULA
G.f.: A(x) = d/dy A(x,y)|_{y = 1}, where A(x,y) = Sum_{i>0} (x^i * y^(i*(i+1)/2)) + Sum_{m>1} (Sum_{i>0} (x^m * y^i * ((x-x^m)/(1-x))^(i-1) * (Sum_{j>=0} (Product_{u=1..j} ((x-x^m)/(1-x) + x^m * y^(u+i)) ) ) ) ).
EXAMPLE
The composition of 7, (1,2,1,1,2) has maximum parts at positions 2 and 5; so it contributes 7 to a(7) = 240.
PROG
(PARI)
A_xy(N) = {my(x='x+O('x^N), h = sum(i=1, N, y^(i*(i+1)/2)*x^i)+sum(m=2, N, sum(i=1, N, ((y^i)*x^m)*((x-x^m)/(1-x))^(i-1)*(sum(j=0, N-m-i, prod(u=1, j, (x-x^m)/(1-x)+(y^(u+i))*x^m)))))); h}
P_xy(N) = Pol(A_xy(N), {x})
A_x(N) = {my(px = deriv(P_xy(N), y), y=1); Vecrev(eval(px))}
A_x(20)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
John Tyler Rascoe, Nov 08 2024
STATUS
approved