Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Nov 21 2024 09:04:11
%S 0,1,4,10,23,50,110,240,526,1147,2489,5368,11510,24543,52090,110109,
%T 231959,487245,1020980,2134838,4455582,9283742,19314740,40128699,
%U 83265342,172564435,357228078,738707908,1526004117,3149310585,6493394292,13376521031,27532616663
%N Sum of the positions of maximum parts in all compositions of n.
%F G.f.: A(x) = d/dy A(x,y)|_{y = 1}, where A(x,y) = Sum_{i>0} (x^i * y^(i*(i+1)/2)) + Sum_{m>1} (Sum_{i>0} (x^m * y^i * ((x-x^m)/(1-x))^(i-1) * (Sum_{j>=0} (Product_{u=1..j} ((x-x^m)/(1-x) + x^m * y^(u+i)) ) ) ) ).
%e The composition of 7, (1,2,1,1,2) has maximum parts at positions 2 and 5; so it contributes 7 to a(7) = 240.
%o (PARI)
%o A_xy(N) = {my(x='x+O('x^N), h = sum(i=1,N, y^(i*(i+1)/2)*x^i)+sum(m=2,N, sum(i=1,N, ((y^i)*x^m)*((x-x^m)/(1-x))^(i-1)*(sum(j=0,N-m-i, prod(u=1,j, (x-x^m)/(1-x)+(y^(u+i))*x^m)))))); h}
%o P_xy(N) = Pol(A_xy(N), {x})
%o A_x(N) = {my(px = deriv(P_xy(N),y), y=1); Vecrev(eval(px))}
%o A_x(20)
%Y Cf. A001792, A010054, A011782, A097976, A097979, A377824.
%K nonn,easy
%O 0,3
%A _John Tyler Rascoe_, Nov 08 2024