login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A377820
Powerful numbers that have a single odd exponent in their prime factorization.
2
8, 27, 32, 72, 108, 125, 128, 200, 243, 288, 343, 392, 432, 500, 512, 648, 675, 800, 968, 972, 1125, 1152, 1323, 1331, 1352, 1372, 1568, 1728, 1800, 2000, 2048, 2187, 2197, 2312, 2592, 2700, 2888, 3087, 3125, 3200, 3267, 3528, 3872, 3888, 4232, 4500, 4563, 4608, 4913, 5000
OFFSET
1,1
COMMENTS
First differs from A370786 at n = 124: A370786(124) = 27000 = 2^3 * 3^3 * 5*3 is not a term of this sequence.
Powerful numbers k such that A350389(k) is a prime power with an odd exponent (A246551).
FORMULA
Sum_{n>=1} 1/a(n) = zeta(2) * P(3) = A013661 * A085541 = 0.28747301899596333866... .
MATHEMATICA
With[{max = 5000}, Select[Union@ Flatten@Table[i^2 * j^3, {j, 1, max^(1/3)}, {i, 1, Sqrt[max/j^3]}], # > 1 && Count[FactorInteger[#][[;; , 2]], _?OddQ] == 1 &]]
PROG
(PARI) is(k) = if(k == 1, 0, my(e = factor(k)[, 2]); vecmin(e) > 1 && #select(x -> (x%2), e) == 1);
CROSSREFS
Intersection of A001694 and A229125.
Intersection of A000037 and A377821.
Sequence in context: A102834 A376171 A370786 * A116002 A339595 A376173
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Nov 09 2024
STATUS
approved