login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370786
Powerful numbers with an odd number of prime factors (counted with multiplicity).
4
8, 27, 32, 72, 108, 125, 128, 200, 243, 288, 343, 392, 432, 500, 512, 648, 675, 800, 968, 972, 1125, 1152, 1323, 1331, 1352, 1372, 1568, 1728, 1800, 2000, 2048, 2187, 2197, 2312, 2592, 2700, 2888, 3087, 3125, 3200, 3267, 3528, 3872, 3888, 4232, 4500, 4563, 4608
OFFSET
1,1
COMMENTS
Jakimczuk (2024) proved:
The number of terms that do not exceed x is N(x) = c * sqrt(x) + o(sqrt(x)) where c = (zeta(3/2)/zeta(3) - 1/zeta(3/2))/2 = 0.895230... .
The relative asymptotic density of this sequence within the powerful numbers is (1 - zeta(3)/(zeta(3/2)^2))/2 = 0.411930... .
In general, the relative asymptotic density of the s-full numbers (numbers whose exponents in their prime factorization are all >= s) with an odd number of prime factors (counted with multiplicity) within the s-full numbers is smaller than 1/2 when s is odd.
LINKS
MATHEMATICA
q[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, AllTrue[e, # > 1 &] && OddQ[Total[e]]]; Select[Range[2500], q]
PROG
(PARI) is(n) = {my(e = factor(n)[, 2]); n > 1 && vecmin(e) > 1 && vecsum(e)%2; }
CROSSREFS
Intersection of A001694 and A026424.
Complement of A370785 within A001694.
A370788 is a subsequence.
Sequence in context: A262675 A102834 A376171 * A377820 A116002 A339595
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Mar 02 2024
STATUS
approved