OFFSET
1,1
COMMENTS
Let N(x) denotes the number of 2-full integers not exceeding x. Then lim_{x->oo} N(x)/sqrt(x) = zeta(3/2)/zeta(3). Also related to Niven's constant.
REFERENCES
S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 112-114.
LINKS
S. W. Golomb, Powerful numbers, Amer. Math. Monthly, Vol. 77 (1970), 848-852.
Ivan Niven, Averages of Exponents in Factoring Integers, Proc. Amer. Math. Soc., Vol. 22, No. 2 (1969), pp. 356-360.
FORMULA
Product_{p prime} (1+1/p^(3/2)) = zeta(3/2)/zeta(3). - T. D. Noe, May 03 2006
Equals lim_{n->oo} (Sum_{k=1..n} A051904(k) - n)/sqrt(n) (Niven, 1969). - Amiram Eldar, Jul 11 2020
EXAMPLE
zeta(3/2)/zeta(3) = 2.17325431251955413823708984...
MATHEMATICA
RealDigits[N[Zeta[3/2]/Zeta[3], 150]][[1]] (* T. D. Noe, May 03 2006 *)
PROG
(PARI) zeta(3/2)/zeta(3) \\ Michel Marcus, Oct 06 2017
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
Benoit Cloitre, Jan 14 2004
EXTENSIONS
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, May 16 2007
STATUS
approved