

A033150


Niven's constant.


12



1, 7, 0, 5, 2, 1, 1, 1, 4, 0, 1, 0, 5, 3, 6, 7, 7, 6, 4, 2, 8, 8, 5, 5, 1, 4, 5, 3, 4, 3, 4, 5, 0, 8, 1, 6, 0, 7, 6, 2, 0, 2, 7, 6, 5, 1, 6, 5, 3, 4, 6, 9, 0, 9, 9, 9, 9, 4, 2, 8, 4, 9, 0, 6, 5, 4, 7, 3, 1, 3, 1, 9, 2, 1, 6, 8, 1, 2, 2, 4, 9, 1, 9, 3, 4, 2, 4, 4, 1, 3, 2, 1, 0, 0, 8, 7, 1, 0, 0, 1, 7, 9
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

This constant is the average value of A051903.  Charles R Greathouse IV, Oct 30 2012
There are no 9's in the first 50 digits after the decimal point. Then, suddenly, it goes 909999.  Bobby Jacobs, Aug 13 2017


LINKS

Table of n, a(n) for n=1..102.
I. Niven, Averages of Exponents in Factoring Integers, Proc. Amer. Math. Soc. 22, 356360, 1969.
Simon Plouffe, The Niven constant to 256 digits
Eric Weisstein's World of Mathematics, Niven's Constant


FORMULA

1 + Sum_{j>=2} 1(1/Zeta(j)).


EXAMPLE

1.7052111401...


MATHEMATICA

rd[n_] := rd[n] = RealDigits[ N[1 + Sum[1  1/Zeta[j], {j, 2, 2^n}] , 105]][[1]]; rd[n = 4]; While[rd[n] =!= rd[n1], n++]; rd[n] (* JeanFrançois Alcover, Oct 25 2012 *)


PROG

(PARI) 1+suminf(j=2, 11/zeta(j)) \\ Charles R Greathouse IV, Aug 13 2017


CROSSREFS

Cf. A033151, A033152, A033153, A033154.
Sequence in context: A099737 A271177 A299624 * A064648 A116198 A137915
Adjacent sequences: A033147 A033148 A033149 * A033151 A033152 A033153


KEYWORD

nonn,cons


AUTHOR

Eric W. Weisstein


EXTENSIONS

Offset corrected by Oleg Marichev (oleg(AT)wolfram.com), Jan 28 2008


STATUS

approved



