

A051903


Maximal exponent in prime factorization of n.


106



0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 5, 1, 2, 2, 2, 1, 1, 1, 3, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


COMMENTS

Smallest number of factors of all factorizations of n into squarefree numbers, see also A128651, A001055.  Reinhard Zumkeller, Mar 30 2007
Maximum number of invariant factors among abelian groups of order n.  Álvar Ibeas, Nov 01 2014
a(n) = the highest of the frequencies of the parts of the partition having Heinz number n. We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product(p_jth prime, j=1...r) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436. Example: a(24) = 3; indeed, the partition having Heinz number 24 = 2*2*2*3 is [1,1,1,2], where the distinct parts 1 and 2 have frequencies 3 and 1, respectively.  Emeric Deutsch, Jun 04 2015


LINKS

T. D. Noe and Daniel Forgues, Table of n, a(n) for n = 1..100000 (first 10000 terms from T. D. Noe)
Eric Weisstein's World of Mathematics, Niven's Constant
Index entries for sequences computed from exponents in factorization of n


FORMULA

a(n) = max_{k=1..A001221(n)} A124010(n,k).  Reinhard Zumkeller, Aug 27 2011
a(1) = 0; for n > 1, a(n) = max(A067029(n), a(A028234(n)).  Antti Karttunen, Aug 08 2016
Conjecture: a(n) = a(A003557(n)) + 1. This relation together with a(1) = 0 defines the sequence.  Velin Yanev, Sep 02 2017
Comment from David J. Seal, Sep 18 2017: (Start)
This conjecture seems very easily provable to me: if the factorization of n is p1^k1 * p2^k2 * ... * pm^km, then the factorization of the largest squarefree divisor of n is p1 * p2 * ... * pm. So the factorization of A003557(n) is p1^(k11) * p2^(k21) * ... * pm^(km1) if exponents of zero are allowed, or with the product terms that have an exponent of zero removed if they're not (if that results in an empty product, consider it to be 1 as usual).
The formula then follows from the fact that provided all ki >= 1, Max(k1, k2, ..., km) = Max(k11, k21, ..., km1) + 1, and Max(k11, k21, ..., km1) is not altered by removing the ki1 values that are 0, provided we treat the empty Max() as being 0. That proves the formula and the provisos about empty products and Max() correspond to a(1) = 0.
Also, for any n, applying the formula Max(k1, k2, ..., km) times to n = p1^k1 * p2^k2 * ... * pm^km reduces all the exponents to zero, i.e., to the case a(1) = 0, so that case and the formula generate the sequence. (End)


EXAMPLE

For n = 72 = 2^3*3^2, a(72) = max(exponents) = max(3,2) = 3.


MAPLE

A051903 := proc(n)
a := 0 ;
for f in ifactors(n)[2] do
a := max(a, op(2, f)) ;
end do:
a ;
end proc: # R. J. Mathar, Apr 03 2012


MATHEMATICA

Table[If[n == 1, 0, Max @@ Last /@ FactorInteger[n]], {n, 100}] (* Ray Chandler, Jan 24 2006 *)


PROG

(Haskell)
a051903 1 = 0
a051903 n = maximum $ a124010_row n  Reinhard Zumkeller, May 27 2012
(PARI) a(n)=if(n>1, vecmax(factor(n)[, 2]), 0) \\ Charles R Greathouse IV, Oct 30 2012
(Python)
from sympy import factorint
def A051903(n):
....return max(factorint(n).values()) if n > 1 else 0
# Chai Wah Wu, Jan 03 2015
(Scheme, with memoizationmacro definec)
(definec (A051903 n) (if (= 1 n) 0 (max (A067029 n) (A051903 (A028234 n))))) ;; Antti Karttunen, Aug 08 2016


CROSSREFS

Average value is A033150 = 1.7052....
Cf. A005361, A008479, A028234, A051904, A052409, A067029, A091050, A129132, A002322.
Sequence in context: A088388 A070013 A070014 * A324912 A157754 A072411
Adjacent sequences: A051900 A051901 A051902 * A051904 A051905 A051906


KEYWORD

nonn,easy


AUTHOR

Labos Elemer, Dec 16 1999


STATUS

approved



